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ABSTRACT

Abstract
Thermodynamics and statistical mechanics, as the name implies, are closely related

to statistics and information theory. In the past, Maxwell’s thought experiment of his

demon and Landauer’s principle showed the direct relationship between information

manipulation and heat flow. With these foundations, energy and information were

considered to be equal.

While many studies including thermodynamics of information are still being

conducted, we have attempted to apply information geometry to thermodynamics.

Information geometry provides a geometric understanding of optimization problems

for the space of probabilities. It is recently attracting a lot of attention in the

field of information theory such as artificial intelligence, machine learning, and

neuroscience. Due to its potential to provide geometric understanding of statistical

mechanics, it has increasingly become a focus of study.

In this paper, we apply information geometry to the generalized second law of

the maximum work formulation, which is the most fundamental law of thermody-

namics. In this application, we introduce a new concept of dimensional divergence

scaled by a parameter such as temperature. We show that the geometric structure of

the generalized second law is obtained by considering it as an optimization problem

for this scaled divergence. Our main result is that scaling the divergence by physical

dimensional quantities significantly changes the geometric structure of the space

of probabilities. Scaled divergence breaks the invariance of Fisher’s information

matrix given for the original dimensionless divergence. It has, however, a dually flat

structure that fits the maximumwork formulation. We also extend this application to

the systems obeying power laws in correlations. In this case, the equilibrium distri-

bution of the system becomes a power distribution such as a Tsallis distribution. The

generalized second law of the maximum @-work formulation for the Tsallis statistics
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ABSTRACT

is also obtained by considering it as an optimization problem for a dimensional

scaled @-divergence.

The second law of thermodynamics is originally restricted to transitions between

equilibrium states. The generalized second law of the maximumwork formulation is

valid for transitions between nonequilibrium states. The maximumwork extractable

from a nonequilibrium initial state is described by the minimum value of Kullback-

Leibler (KL) divergence between the nonequilibrium initial distribution of the system

and the corresponding canonical distribution, multiplied by temperature. Thus, the

maximum work formulation is reduced to an optimization problem of the scaled KL

divergences. KL divergence plays a central role in information geometry because it

satisfies invariance and is a kind of Bregman divergence. To solve the optimization

problem in information geometry, Amari’s generalized Pythagorean theorem is

provided for a Bregman divergence.

It is well known that Amari’s generalized Pythagorean theorem for three KL

divergences gives the maximum entropy principle. For the maximum work formu-

lation, a temperature parameter provides an energy dimension if we set Boltzmann’s

constant to 1. In applying information geometry to the generalized second law,

we need the divergence scaled by the temperature. We obtain the maximum work

formulation as a consequence of the generalized Pythagorean theorem. The scaled

divergence has dimension, while typical divergences in information geometry are

dimensionless. The metric of the scaled KL divergence breaks the invariance of

Fisher’s information matrix of the original KL divergence. In applying the gen-

eralized Pythagorean theorem, the temperature line and the isentropic surface are

orthogonal for dimensional scaled KL divergences, while the inverse temperature

line and the isoenergetic surface are orthogonal for the original KL divergences.

Temperature and entropy are related to each other by the Legendre transformation,

where the Bregman divergence for the free energy as a convex function leads to this

dimensional divergence in the space of canonical distributions.
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We also discuss the dual structure of the scaled KL divergence. An important

property of information geometry is that divergence is not a mathematical distance

in general. The mathematical distance of two points is symmetric for the exchange

of the two points. The divergence of two distributions is generally not symmetric

for the exchange of the two distributions. The divergence exchanged of the two

distributions is the Legendre transformed divergence. This dual structure leads

to the other important scaled divergence. We propose a divergence scaled by the

inverse of the energy that is a dual parameter of the temperature. We expect

this scaled divergence to be useful in considerations of heat engines in contact

with finite high/low-temperature heat baths. These three divergences: the original

dimensionless KL divergence, the KL divergence scaled by temperature, and the KL

divergence scaled by the inverse of energy, have a symmetric structure based on the

dual structure of information geometry. A list of these divergences is provided in

this paper.

Finally, we extend our arguments based on statistical mechanics of exponential

distributions, such as canonical distribution, to the statistical mechanics of power

distributions. In Tsallis’s @-statistics, we can extend our arguments using Amari-

Ohara’s normalized @-geometry. Dimensional normalized @-divergences give us the

maximum @-work formulation and its geometric structures.
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1 INTRODUCTION

1 Introduction

1.1 Background

The chief concern of thermodynamics is the interconversion of heat and work.

Whereas the first law of thermodynamics puts these two forms of energy on an equal

footing, the second law expresses a dissymmetry between them. Work can be turned

into heat without restriction, but heat can only be harnessed to do work with limited

efficiency [1, 2].

We have recognized for some time that information processing can play an

important role in a deeper understanding of the second law, an idea further exem-

plified through Maxwell’s thought experiment [3–5]. By introducing a being whose

sharpened faculties enabled it to perceive and manipulate individual molecules,

Maxwell showed that appropriate operation based on information provides energy.

Landauer [6], Bennett [7], and others [8–10], also pointed out that information pro-

cessing itself may be accompanied by thermal effects, sometimes in subtle ways. For

example, Landauer’s principle dictates that erasing one bit requires at least :T log 2

of energy (:: Boltzmann’s constant, T : temperature). These considerations have

led researchers to recognize information as a resource on par with heat and work in

formulating the thermodynamics of information [11–15].

Thermodynamics and information theory are closely related, even in light of

statistical mechanics. Statistical mechanics applies both probability theory and

mechanics at the microscopic level to the study of thermodynamic behavior of many-

body systems. In these cases, the state of the system is represented by a probability

distribution. The study of statistical mechanics was initiated by Boltzmann at the

end of the nineteenth century. With his contribution, Maxwell and Gibbs later

established the study of statistical mechanics for the equilibrium state.
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1 INTRODUCTION

Recently, there has been a gradual emergence of attempts to apply information

geometry [16,17], a branch of information theory, to thermodynamics. Information

geometry is a differential geometric theory for the space of probability distributions.

It has received a lot of attention in a variety of fields, such as machine learning,

neuroscience, and optimal transport problem. It is written in terms of divergence

such as the Kullback–Leibler (KL) divergence (also known as relative entropy in

physics) in the Riemann geometry. Probability distributions are the points of a

Riemannian manifold and the Fisher information metric provides the Riemannian

metric. KL divergence is not a true metric for distance in mathematics as it is not

symmetric when replaced by two probabilities. Even so, Amari et. al. showed the

generalized Pythagorean theorem for a "right-angled triangle" of three probability

densities and introduced "projection," an important concept in information geometry.

A unified understanding of nature based on geometry is the ultimate goal in Ein-

stein’s ideas. The general theory of relativity and gauge theory are representative

examples. However, thermal and statistical mechanics, which deals with phenomena

in a many-body system, has not been regarded as a target of this geometrization.

Although Weinhold [18], Ruppeiner [19], Crooks [20, 21], and others [22–24] have

discussed statistical mechanics from the differential geometrical view of point, it

is still incompletely understood. They introduced the concept of "thermodynamic

length", but they only took into account symmetrical distances. Most of their dis-

cussions can only be applied to near-equilibrium states or linear-response regimes.

After the development of information geometry, which takes information as the

object of geometry, the geometrical interpretation of thermal and statistical mechan-

ics is now a possibility. A recent study of thermodynamics based on information

geometry has been made by Ito et. al. [25, 26] in the context of stochastic thermo-

dynamics [27–29]. They showed that in a Markov process, the positivity of entropy

production is given by the optimized KL divergence between a discrete distribution

of the system and the backward manifold. The optimization is done by the general-
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1 INTRODUCTION

ized Pythagorean theorem and the positivity is valid since KL divergence is always

nonnegative. They also pointed out a relationship between information geometry

and the Glansdorff-Prigogine criterion for stability [30].

In this thesis, we consider a Hamiltonian system. The total information, Gibbs-

Shannon (GS) entropy for the whole system, is rigorously conserved in a Hamil-

tonian system. Change in entropy means loss of information. We can understand

how entropy increases in a Markov process at the level of underlying Hamiltonian

dynamics.

In a thermally isolated Hamiltonian system, we reconsider the maximum work

formulation of the second law generalized to transitions between nonequilibrium

states from the point of view of information geometry [31]. The original sec-

ond law of thermodynamics is restricted to transitions between two equilibrium

states. Independently of one another, Takara et. al. [32–35] and Esposito and

Van den Broeck [36, 37] proposed the maximum work formulation generalized for

a nonequilibrium initial state (nonequilibrium maximum work formulation). The

nonequilibrium maximum work formulation is based on two fundamental proper-

ties: entropy conservation in Hamiltonian dynamics and the non-negativity of the

KL divergence in information theory. It is a universal law and valid even for an inte-

grable system. This fact means that it does not have anything to do with dynamical

properties such as relaxation to an equilibrium state.

The generalized second law is stated in terms of the initial and final KL diver-

gences between each nonequilibrium state and corresponding canonical states, as

well as the Helmholtz free energy of the canonical states. The lower bound of work

is given by the KL divergence between the initial state and corresponding canonical

state. It is intuited as a change of "nonequilibriumness" since KL divergence gives

the difference between the nonequilibrium probability density and the equilibrium

canonical distribution. If the process is cyclic and the initial state is an equilibrium

canonical state, KL divergence becomes zero and no more work can be derived from
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1 INTRODUCTION

the system. This is the original second law.

In this thesis, we discuss the geometrical structure behind this generalized sec-

ond law based on information geometry, especially the generalized Pythagorean

theorem [31] developed by Amari et. al. [16, 17]. It is well known that the gener-

alized Pythagorean theorem for three KL divergences gives the maximum entropy

principle. For the maximum work formulation, a temperature parameter provides

an energy dimension if we set Boltzmann’s constant to 1. In applying informa-

tion geometry to the generalized second law, we need the divergence scaled by the

temperature. We obtain the maximum work formulation as a consequence of the

generalized Pythagorean theorem. The scaled divergence has dimension, while typi-

cal divergences in information geometry are dimensionless. The metric of the scaled

KL divergence breaks the invariance of Fisher’s information matrix of the original

KL divergence. However, the scaledKL divergence has a dually flat structure that fits

the maximum work formulation. In applying the generalized Pythagorean theorem,

the temperature line and the isentropic surface are orthogonal for the dimensional

scaled KL divergences, while the inverse temperature line and the isoenergetic sur-

face are orthogonal for the original KL divergences. Temperature and entropy are

related to each other by the Legendre transformation, where the Bregman divergence

for free energy as a convex function leads to this dimensional divergence in the space

of canonical distributions.

We also discuss the dual structure of the scaled KL divergence. An important

property of information geometry is that divergence is not a mathematical distance

in general. The mathematical distance of two points is symmetric for the exchange

of the two points. The divergence of two distributions is generally not symmetric

for the exchange of the two distributions. The divergence exchanged of the two

distributions is the Legendre transformed divergence. This dual structure leads

to the other important scaled divergence. We propose a divergence scaled by the

inverse of the energy that is a dual parameter of the temperature. We expect
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1 INTRODUCTION

this scaled divergence to be useful in considerations of heat engines in contact

with finite high/low-temperature heat baths. These three divergences: the original

dimensionless KL divergence, the KL divergence scaled by temperature, and the KL

divergence scaled by the inverse of energy, have a symmetric structure based on the

dual structure of information geometry. A list of these divergences is provided in

this paper.

Finally, we extend our argument for a system obeying power law such as Tsallis’s

statistics [38–41]. Systems obeying power law appear when there is a long-time cor-

relation between particles and are found in many situations such as thermodynamics,

network science, and economics. Tsallis used parameter @ and introduced his @-

exponential and @-logarithmic functions, @-entropy, @-density, etc. Furthermore,

he pointed out the relationship between Tsallis statistics and information geome-

try [42,43]. The @-divergence in Tsallis’s statistics and the @-divergence in informa-

tion geometry were related by U = 1 − 2@. After that, Amari-Ohara introduced the

Bregman divergence, which is defined as Tsallis’s @-divergence divided by the con-

formal factor [44, 45]. Since Bregman divergence is a key concept in the structure

of information geometry, the generalized Pythagorean theorem for this divergence

also holds. We show that the maximum work formulation is extended to the max-

imum @-work formulation. Then we introduce Amari-Ohara’s @-divergence scaled

by temperature. By applying Amari-Ohara’s generalized Pythagorean theorem for

scaled Amari-Ohara’s @-divergence, we obtain the maximum @-work formulation

and its geometrical structure.

1.2 Outlines

In the next section, we start by recalling the maximum work formulation of the

generalized second law. First, in subsection 2.1, we briefly review the normal

second law for the transition between two equilibrium states. This thermodynamic
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formulation of the second law has the advantage of being stated just in terms of

energetic quantities: the work and the change in the Helmholtz free energy. It says

that for a system in contact with a heat reservoir the work that can be extracted from

the system is at most the decrease in its Helmholtz free energy. In subsection 2.2,

we give a derivation of the generalized second law for a thermally isolated system

and a system in contact with a heat reservoir. To consider transitions between

nonequilibrium states we go to the finer level of description of the system provided

by statistical mechanics. The nonequilibrium state is described by a distribution

function in classical mechanics or a density matrix in quantum mechanics. In the

last subsection, we consider the generalized second law for a system in contact with

a heat reservoir.

In Sections 3, we reconsider the generalized second law based on information

geometry. In the first subsection, we consider the case of a cyclic operation. Since

there is no change in the Helmholtz free energy for a cyclic operation, the work is

written only by the KL divergences scaled by temperature. "Information distance"

measured by the KL divergence is dimensionless. We need energy dimensional

"distance" to measure extractable work from a nonequilibrium state in the gener-

alized second law. This energy dimensional "distance," hereafter referred to as

"thermodynamic distance," is the KL divergence scaled by a temperature.

Thework is bounded frombelowby the scaledKLdivergence between a nonequi-

librium initial state and a canonical state. The canonical state is parameterized by

temperature. The maximumwork is determined byminimizing the "thermodynamic

distance." Amari’s generalized Pythagorean theorem for the scaled KL divergences

gives orthogonality between the one-parameter line of canonical states and the isen-

tropic surface of state space. The maximumwork is given by the canonical state that

intersects the surface, with the temperature determined by the isentropic condition.

In subsection 3.2, we briefly explain the basic concepts of information geometry

such as Bregman divergence and the proof of Amari’s generalized Pythagorean
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theorem. Bregman divergence is an important type of divergence which leads to

the dually flat structure. We show that the scaled KL divergence is a new kind of

Bregman divergence derived from using the free energy as a convex function. In

subsection 3.3, we discuss the scaling of the KL divergence between more general

exponential distributions. We find that the temperature scaling that appears in the

generalized second law was a natural scaling for the canonical distribution. We also

find that the scaling with the inverse of the energy appears naturally as well. These

three divergences have a symmetrical relationship.

We extend our arguments to the case of a general non-cyclic operation in sub-

section 3.4. We also illustrate a concrete simple example of Amari’s generalized

Pythagorean theorem for the scaled KL divergences using the adiabatic expansion of

the ideal gas in subsection 3.5. Finally, in subsection 3.6, we apply the geometrical

interpretation of the generalized maximum work formulation to a simple two-level

quantum system. The optimal cyclic operation to extract work from a nonequilib-

rium state is determined by minimalizing the scaled KL divergence between the final

state and the final canonical state. The geometrical interpretation of the generalized

maximum work formulation gives us a systematic method to figure out a protocol to

realize the optimal operation.

In Appendix A, a geometrical interpretation of thermodynamics for Tsallis statis-

tics is presented. The discussion is completely parallel to the generalized second law

based on the KL divergence, although all functions have been extended by parameter

@. Other details of the calculations that were not mentioned in the main text are also

supplemented in the appendices.

This thesis relies on references [31, 35]. Several statements, equations, and

figures are mentioned here without reference to these references.
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2 THE GENERALIZED SECOND LAW

2 The generalized second law

2.1 The second law of thermodynamics

We start with the maximum work formulation of the second law for transitions

between equilibrium states. Consider a system in thermal contact with a heat

reservoir at temperature T and able to perform work through the change of external

parameters. This is the ordinary situation considered in elementary thermodynamics.

The changing parameter performing work is, for example, a movable wall of a

container [46] or a magnetic field interacting with the system of interest [47].

The first law of thermodynamics for our system of interest undergoing a process

is

Δ� = , +&, (2.1)

where Δ� ≡ �) − �0 is the change in internal energy of the system from its initial

state at time C = 0 to its final state at time C = ) , , is the work done on the system

and & is the heat added to the system from the reservoir. Our interest is in work

extraction from the system so we rewrite the first law as

, = Δ� −&. (2.2)

Since a positive value for, means that energy is added to the system, extraction of

energy in the form of work occurs when, is negative.

A convenient thermodynamic potential to use for a system in contact with a heat

reservoir is the Helmholtz free energy, which is given by

� = � − T (, (2.3)

where ( is the thermodynamic entropy of the system and T is the absolute tem-
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2 THE GENERALIZED SECOND LAW

perature. The change in the free energy during the process we are considering

is

Δ� = Δ� − TΔ(. (2.4)

Using this in our expression Eq. (2.2) for the work gives

, = Δ� + TΔ( −&. (2.5)

Now, we bring in the second law of thermodynamics in the form of the Clausius

inequality

TΔ( ≥ &, (2.6)

which, when used in Eq. (2.5), gives us the work inequality

, ≥ Δ�. (2.7)

This is the maximum work formulation of the second law. It tells us that the most

work that can be extracted from the system in a transition between two equilibrium

states is the decrease in the free energy of the system. Most work is obtained in a

dissipationless process.

For the case of a cyclic transition, when the system returns to its initial con-

figuration so that the free energy returns to its initial value, the work inequality

becomes

, ≥ 0. (2.8)

This tells us that we can’t get work out of a single heat reservoir by a process that

returns the system to its original configuration, i.e., thermodynamical considerations

prohibit the construction of a perpetual motion machine (of the second kind).

Perhaps the simplest application of themaximumwork formulation of the second

law is to an ideal gas, in contact with a heat reservoir at temperature T , in a container

15



2 THE GENERALIZED SECOND LAW

with amovable wall, such as a piston, that performswork. This is a standard example

considered in all textbooks but we briefly recall it here for reference. Work is done by

the systemwhen the container expands and the most work is done in a dissipationless

quasi-static expansion. The work, in this case, is given by

,@B = −
∫ +)

+0

?3+ = −#:T
∫ +)

+0

3+

+
= −#:T log

+)

+0
, (2.9)

where +C is the volume at time C, ? is the pressure, # is the number of particles

and : is the Boltzmann’s constant. We also used the equation of state for the ideal

gas: ?+ = #:T . Since the internal energy of the ideal gas doesn’t change when its
temperature remains the same, the work done is equal to the heat received from the

bath. The heat flow is responsible for the entropy increase of the gas given by

Δ( =
&

T = −
,@B

T . (2.10)

So, the change in the Helmholtz free energy of the gas is precisely the work done by

the gas found in Eq. (2.9) above,

Δ� = Δ� − TΔ( = ,@B . (2.11)

Since the expansion is dissipationless the work inequality (2.7) is saturated.

2.2 Generalized second law for a thermally isolated system

For the generalization of the second law, we need to go beyond the purely thermody-

namical description in the previous subsection to a statistical mechanics description.

We first consider a thermally isolated Hamiltonian system and focus on the period

of the operation starting at C = 0 and finishing at C = ) . The state is described

using the probability density, d(G, C) (or dC in abbreviated form), at time C and

16



2 THE GENERALIZED SECOND LAW

phase-space point G, which is either specified or is obtained by dynamical evolution

from a previously specified state. The dynamics of the system is governed by its

Hamiltonian, � (G, ^(C)) (abbreviated as �C), that has an explicit time dependence

due to the external parameters, ^(C), under our control. Hereafter we abbreviate a

function of time �(C) as �C .
The time evolution of the state is written using the time evolution operator* as

d) = *
) d0. (2.12)

where*) is defined as

*) = )̂ exp
(
−i

∫ )

0
! (^(C))3C

)
, (2.13)

where )̂ is the time-ordered product and ! is the Liouvillian for the Hamiltonian.

We employ the bracket notation to describe the expectation value of an observable

�(G) as,
〈�|d〉 =

∫
Γ

�∗(G)d(G)3G, (2.14)

where Γ is the phase space of the Hamiltonian system and �∗ is the (transposed)

complex conjugate of �. We employ the bracket notation for a quantum system

as 〈�|d〉 = Tr[�d]. This quantum version will be used later when dealing with

concrete examples of a simple two-level quantum system.

Thus the expectation value of the Hamiltonian of the system at time C is given

by 〈�C |dC〉. The work done on this thermally isolated system is given just by the

change in the internal energy of the system, i.e.,

, = �) − �0 (2.15)
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2 THE GENERALIZED SECOND LAW

where the internal energy of the system at time C is

�C = 〈�C |dC〉. (2.16)

The canonical distribution of the system with respect to the Hamiltonian and

with a parameter U will play an important role:

dcan(U) =
4−U�

/ (U) . (2.17)

Here, the partition function is

/ (U) =
〈
1|4−U�

〉
. (2.18)

We are going to rewrite by using its relation to the Helmholtz free energy

� (U) = −U−1 log / (U), (2.19)

so that the canonical distributionmay be expressed simply as the exponential function

dcan(U) = 4U{� (U)−�} . (2.20)

We also will employ the Gibbs–Shannon (GS) entropy of the system as

([d] = −〈log d |d〉 (2.21)

where we set the Boltzmann constant : = 1 to make the thermodynamic entropy

compatible with the dimensionless entropy in information theory.

The cross entropy appearing in information theory is defined as

(� [d�, d�] = −〈log d� |d�〉. (2.22)
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2 THE GENERALIZED SECOND LAW

Specifically, the cross entropy between a probability density and a canonical distri-

bution is given as,

(� [d, dcan(U)] = −U� (U) + U� (2.23)

where we used the property of a normalized distribution, < 1|d >= 1.

Of chief importance for the generalized second law is the KL divergence between

two states, d� and d�, given by

� ! [d� ‖ d�] ≡
〈
log

d�

d�

���� d�〉 = 〈log d� |d�〉 − 〈log d� |d�〉 (2.24)

= −([d�] + (� [d�, d�] . (2.25)

The KL divergence measures the "distance" between the two states. Its most im-

portant property in the derivation of the generalized second law will be its non-

negativity:

� ! [d� ‖ d�] ≥ 0. (2.26)

The KL divergence is zero only when d� = d�. See Appendix B for proofs of these

facts. In Appendix B, we also show the non-negativity of KL divergence in the

quantum case.

The basic quantitative relationship we need to obtain the generalized second law

emerges when we take the KL divergence of an arbitrary state, d, with respect to a

canonical state, dcan(U). This gives

� ! [d ‖ dcan(U)] = 〈log d |d〉 − 〈log dcan(U) |d〉 (2.27)

= −([d] − 〈U(� (U) − �) |d〉. (2.28)

Now, d is a normalized distribution and � (U) does not depend on the phase space
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2 THE GENERALIZED SECOND LAW

variables so it has nothing to integrate. Thus,

� ! [d ‖ dcan(U)] = −([d] − U� (U) + U�. (2.29)

The KL divergence of an arbitrary state with a canonical state gives us a sum of

terms involving the entropy of the arbitrary state, the free energy of the canonical

state and the internal energy of the arbitrary state.

Using the above relation, the internal energy of the state at time C is written as

�C = �C (U) + U−1([dC] + U−1� ! [dC ‖ dcan,C (U)] . (2.30)

Since the work is given by the change in the internal energy as in Eq. (2.15), we

obtain

, = Δ� (U) + U−1� ! [d) ‖ dcan,) (U)] − U−1� ! [d0 ‖ dcan,0(U)] (2.31)

where we used the conservation of the GS entropy in a thermally isolated Hamil-

tonian system, i.e., ([d) ] = ([d0]; and Δ� (U) ≡ �) (U) − �0(U) is the change in
the Helmholtz free energy of the system. Since there is no heat bath and we do

not have an a priori temperature, we call the parameter corresponding to an inverse

temperature as U.

The work equality, Eq. (2.31), is just a statement of energy accounting when

we know the initial and final state of the system as well as the initial and final

Hamiltonians. Let us suppose that a nonequilibrium initial state is just given and

associated Hamiltonian with external parameters are under our control. Until we

choose a schedule for the parameter control of the Hamiltonian the final state is

not determined. Due to the non-negativity of the KL divergence term involving the

unknown final state, Eq. (2.31) gives us under the condition of a known initial state

20



2 THE GENERALIZED SECOND LAW

the following work inequality:

, ≥ Δ� (U) − U−1� ! [d0 ‖ dcan,0(U)] ≡ W!� (U) (2.32)

where we denote the lower bound for the work asW!� (U).
First, we note that the inequality (2.32) is true for any value of U. Second,

W!� (U) is a concave function of U−1, which means that it has a global maximum

as a function of U as discussed in Appendix C. Thus, there exists a best value for

U; namely, the value for which W!� (U) is a maximum. This is so because the

maximum ofW!� (U) is a value for the work that may be achieved. A lesser value

forW!� (U) (i.e., a more negative value when considering work extraction) while

giving a true inequality would not be an achievable value for the work since this

value would not satisfy the inequality of, ≥ max.[W!� (U)], which must be true.

To find the maximum of W!� (U) we make its dependence on U explicit by

writing the KL divergence, as in Eq. (2.29), in terms of the entropy, free energy and

internal energy as

W!� (U) = �) (U) + U−1([d0] − �0. (2.33)

Now, taking the derivative with respect to U, and using the fact that the derivative

of the free energy with respect to temperature is minus the entropy gives us

mW!� (U)
mU

=
1
U2 ([dcan,) (U)] −

1
U2 ([d0] . (2.34)

The value of U = Ṽwhere this equals zero we call the effective (inverse) temperature.

This gives us the isentropic condition of

([dcan,) ( Ṽ)] = ([d0] . (2.35)

So, the effective temperature is determined as the temperature of the canonical
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2 THE GENERALIZED SECOND LAW

distribution with respect to the final Hamiltonian that has the same entropy as the

initial nonequilibrium state. This condition is entirely reasonable as the dynamics

preserves the entropy and the final distribution being canonical means that the

maximum energy permissible has been extracted. The isentropic condition is also

naturally derived from Amari’s generalized Pythagorean theorem in information

geometry, which will be discussed in the next section.

The generalized second law for a nonequilibrium initial state in a thermally

isolated system is thus,

, ≥ Δ� ( Ṽ) − Ṽ−1� ! [d0 ‖ dcan,0( Ṽ)], (2.36)

where the effective temperature, Ṽ−1, is determined by the isentropic condition,

Eq. (2.35).

If the Hamiltonian is changed back to its original form, as in a cyclic process,

then Δ� = 0 and the work on the system from the initial nonequilibrium state is just

, ≥ −Ṽ−1� ! [d0 ‖ dcan,0( Ṽ)] . (2.37)

In both cases the work extracted from the system is −, .

The KL divergence in the right-hand-side of Eq. (2.37) measures the "informa-

tion distance" corresponding to the available informational resource. The effective

temperature converts the available informational resource to the extractable work.

Considering the Kelvin principle in the context of a thermally isolated system leads

us to regard a canonical state as an equilibrium state for such a system as well [48].

At the end of this subsection, we comment on the physical depiction of work

equality, Eq. (2.31) and consider the generalized second law to formulate a protocol

for work extraction. To extract maximum work as in Eq. (2.36) or Eq. (2.37), it

is best that the final state of the system is in equilibrium. The relative entropy of
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2 THE GENERALIZED SECOND LAW

a nonequilibrium initial state with the canonical state corresponding to the initial

Hamiltonian of the system quantifies the maximum extractable work from such a

nonequilibrium state as seen in Eq. (2.37). We know in general that dissipation is as-

sociated with nonequilibrium states so in order to get the maximum extractable work

we should immediately stop the evolution of the nonequilibrium state and make it an

equilibrium state for a new Hamiltonian. This new Hamiltonian should be reachable

from the initial Hamiltonian through the time-dependent external parameters that

are under our control. Once the state is stabilized and made an equilibrium state a

process (in general quasi-static) is performed by changing the external parameters

and putting the system into its final state while work is extracted. In general work

extraction may occur in either or both of the stabilization and restoration processes.

With such an operation, entropy is conserved as in Eq. (2.35) and maximum work

is achieved as in Eq. (2.36) or Eq. (2.37).

2.3 Generalized second law for a system in contact with heat

reservoir

Based on the generalized second law for thermally isolated systems, we derive the

generalized second law for the case where the system is in contact with a heat

reservoir with inverse temperature V. First, we consider the whole system as a

thermally isolated system and divide it into two subsystems. The isothermal system

in contact with a heat reservoir is then realized by taking the thermodynamic limit

for one of the two subsystems.

Consider a situation where a finite system of coupled with a finite heat reservoir.

We represent functions related to the system of interest and heat reservoir with

superscript (() and ('), respectively. They are interacting and exchanging energy.

The state is described using the joint probability, dC (-) = dC (G, H) at time C where

the phase-space point is - = (G, H), G is a point with respect to the system and H is
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System
(𝑆)

Reservoir
(𝑅)

The two systems are far apart.

System
(𝑆)

Reservoir
(𝑅)

System
(𝑆)

Reservoir
(𝑅)

The two systems are interacting.

𝑡 ≤ 0 0 < 𝑡 < 𝑇 𝑇 ≤ 𝑡

𝐻 ! 𝑥, 𝑦 = 0 𝐻 ! 𝑥, 𝑦 = 0𝐻 ! 𝑥, 𝑦 ≠ 0

energy

The two systems are far apart again.

Figure 1: Image of a situation where a system and a heat reservoir interact each
other. The interaction occurs during 0 < C < ) , and the rest of the time they are far
apart.

a point with respect to the heat reservoir. The total Hamiltonian consists of three

parts:

�C (-) = � (-, ^(C))

= � (() (G, ^( (C)) + � (') (H, ^' (C)) + � (�) (G, H)

= �
(()
C (G) + �

(')
C (H) + � (�) (G, H) (2.38)

where � (()C (G)
(
= � (() (G, ^( (C))

)
and � (')C (H)

(
= � (') (H, ^' (C))

)
are the Hamil-

tonian for the system and reservoir respectively, and � (�) (G, H) is the interaction

Hamiltonian between them. We assume that the interaction occurs during 0 < C < ) .

So the interaction Hamiltonian is

� (�) (G, H)


= 0 (C ≤ 0, ) ≤ C)

≠ 0 (0 < C < ))
(2.39)

as described in Figure 1.
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2 THE GENERALIZED SECOND LAW

The two systems are far apart and independent at time C ≤ 0, so the initial joint

probability of the whole system is written as a product of two marginal distributions:

d0(G, H) = d(()0 (G)d
(')
0 (H). (2.40)

The initial and final canonical distributions are also written in a simple product since

their Hamiltonians are additive,

dcan,0/) (U) = exp
{
U

(
�0/) (U) − �0/)

)}
= exp

{
U

(
�
(()
0/) (U) + �

(')
0/) (U) − �

(()
0/) − �

(')
0/)

)}
= exp

{
U

(
�
(()
0/) (U) − �

(()
0/)

)}
exp

{
U

(
�
(')
0/) (U) − �

(')
0/)

)}
= d

(()
can,0/) (U)d

(')
can,0/) (U), (2.41)

where 0/) means 0 or ) and we used the additivity of free energy �0/) (U) =
�
(()
0/) (U)+�

(')
0/) (U)which is also easily derived from the additivity of theHamiltonian.

The final state, however, are dependent. We only decompose it as

d) (G, H) = d(()) (G)d
(')
)
(H |G). (2.42)

Since thewhole system is assumed to be a thermally isolated system, we apply the

generalized maximum work formulation (2.36) for it under the isentropic condition

(2.35). Independency of Eqs. (2.40) and (2.41) gives us

, ≥ Δ� ( Ṽ) − Ṽ−1� ! [d0 ‖ dcan,0( Ṽ)]

= Δ� (() ( Ṽ) − Ṽ−1� ! [d(()0 ‖ d(()can,0( Ṽ)] + Δ�
(') ( Ṽ) − Ṽ−1� ! [d(')0 ‖ d(')can,0( Ṽ)]

(2.43)
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and the isentropic condition is

([d(()can,) ( Ṽ)] + ([d
(')
can,) ( Ṽ)] = ([d

(()
0 ] + ([d

(')
0 ] . (2.44)

We assume that the heat reservoir is initially canonical distribution with a tem-

perature V, i.e.,

d
(')
0 = d

(')
can (V). (2.45)

Eq. (2.43) is transformed using Eqs. (2.44) and (2.45) as follows,

, ≥ Δ� (() (V)+Δ� (') (V)−V−1� ! [d(()0 ‖ d(()can,0(V)]+V
−1� ! [dcan,) ( Ṽ) ‖ dcan,) (V)] .

(2.46)

We put

,
(()
$

= −Δ� (() (V) + V−1� ! [d(()0 ‖ d(()can,0(V)] (2.47)

which is a quantity that only depends on the system, and assume that no operations

are performed on the reservoir (i.e. there is no change in the Hamiltonian of the

reservoir) and that Δ� (') (V) = 0. Then we have

, ≥ −, (()
$
+ V−1� ! [dcan,) ( Ṽ) ‖ dcan,) (V)] . (2.48)

Finally, we consider the thermodynamic limitwhere the heat reservoir is infinitely

large. The effective temperature becomes the temperature of reservoir, Ṽ = V in

this case. It is justified by the isentropic condition (2.44) and the fact that entropy

is a quantitative quantity and that entropy is a monotonic function of temperature.

Thus, the KL divergence in Eq. (2.48) vanishes and we obtain the maximum work

formulation for the isothermal process as

, ≥ Δ� (() (V) − V−1� ! [d(()0 ‖ d(()can,0(V)] . (2.49)
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The difference from Eq. (2.36) in the thermally isolated system is that the effective

temperature has been changed to the temperature of the heat reservoir.

The right-hand-side of Eq. (2.49) is the maximum work that can be extracted

when we are given only the nonequilibrium initial state of the system. It is again

generally obtained by instantaneous stabilization, which stops the relaxation of

the system and eliminates the temperature difference with the heat reservoir, and

by quasi-static operations, which conserve entropy. If the initial distribution of

the system is a canonical distribution with the same temperature as the reservoir,

d
(()
0 = d

(()
can,0(V), the extractable work is the difference in free energy of the system,

reproducing Kelvin’s principle.

In this section, we have shown the derivation of the generalized second law

extended to transitions between nonequilibrium states. It was derived from two

basic properties: the conservation of GS entropy in Hamiltonian dynamics and the

non-negativity of KL divergence. It is important to note that the maximum work

that can be extracted from the system is determined by the "nonequilibriumness"

measured by theKL divergence. In the next section, wewill consider the geometrical

structure of this generalized second law on the basis of the geometry of the KL-

divergence given by information geometry.
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3 Reconsideration of the generalized second
law based on information geometry

3.1 The case of cyclic processes

As shown in Eq. (2.31), the extractable work for a thermally isolated system is given

as the difference between two KL divergences scaled by a temperature U−1 (and the

change in the Helmholtz free energy). This work equality suggests that there is an

information-geometric foundation of the generalized second law. In this subsection,

we consider a cyclic operation because this case has a clearer geometric structure

than the case of a non-cyclic operation, which we will consider in subsection 3.4.

Information geometry considers the geometric structure in parameter space of

families of probability distributions [16, 17]. A parameter (vector) \ specifies the

distribution d(\) and the notion of "distance" between two distributions is provided
by a divergence function � [d(\�) ‖ d(\�)], which satisfies the following three

conditions:

1. Non-negativity: � [d(\�) ‖ d(\�)] ≥ 0.

2. Uniqueness: � [d(\�) ‖ d(\�)] = 0, if and only if \� = \�.

3. Positive-definiteness of the metric tensor 68 9 :

� [d(\) ‖ d(\ + 3\)] =
∑
(68 9/2)3\83\ 9 .

The geometric structure is determined by the metric tensor appearing in the above

local divergence. The KL divergence satisfies the above conditions and its metric
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tensor is the well-known Fisher information matrix,

68 9 = 〈
m log d(\)

m\8

m log d(\)
m\ 9

|d(\)〉. (3.1)

Nowwedefine the key concept, "thermodynamic distance." The "thermodynamic

distance" is the KL divergence between an arbitrary probability distribution and

a canonical distribution scaled by the temperature of the canonical distribution,

U−1� ! [d ‖ dcan(U)]. A divergence scaled by a positive parameter satisfies the

above three conditions so that the scaled divergence is also a divergence. This scaled

KL divergence has an energy dimension and measures the extractable work in the

generalized second law as a "thermodynamic distance." The metric tensor of the

scaled KL divergence is the Fisher information matrix scaled by the temperature.

The different metric tensor gives us a completely different geometric structure as

will be shown in the next subsection.

The maximum extractable work for a cyclic process is determined by the follow-

ing inequality obtained from Eq. (2.32),

, ≥ −U−1� ! [d0 ‖ dcan,0(U)] (3.2)

where we usedΔ� (U) = 0 and the non-negativity of the KL divergence involving the

final distribution. In order to find the lower bound of, in Eq. (3.2) (i.e., the upper

bound for the extractable work), we have to find the value of U that makes the right-

hand-side of Eq. (3.2) maximum. In the previous section we derived the condition

of the effective temperature by differentiating the right-hand-side of Eq. (3.2). Now

we use the information-geometric structure to derive the same condition.

The minimum (or shortest) distance from a point to a plane is obtained by the

Pythagorean theorem in elementary geometry. Similarly, the minimum divergence

from a probability distribution to a curved surface is obtained by the generalized

29
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Pythagorean theorem in information geometry. Hereafter, for the sake of brevity, we

will write it as GPT. The GPT is based on three divergences. Suppose that a point %

is a probability distribution and S is a curved surface which does not include point

% in the space of probability distribution. When there exists a point& within S such

that the geodesic line from % to & is orthogonal to S as illustrated in Figure 2, the

GPT holds as

� [% ‖ '] = � [% ‖ &] + � [& ‖ '] for ∀' ∈ S. (3.3)

From the non-negativity of the divergence, we obtain

� [% ‖ '] ≥ � [% ‖ &] for ∀' ∈ S (3.4)

which means that the divergence between % and & is minimum [16,17].

![# ∥ %]

![' ∥ %]

![# ∥ ']

'

#

%
S

<latexit sha1_base64="4nJNPlzN8M9mnW4GD/Fe9S2os0Q="></latexit><latexit sha1_base64="4nJNPlzN8M9mnW4GD/Fe9S2os0Q="></latexit><latexit sha1_base64="4nJNPlzN8M9mnW4GD/Fe9S2os0Q="></latexit><latexit sha1_base64="4nJNPlzN8M9mnW4GD/Fe9S2os0Q="></latexit>

Figure 2: The image of the GPT.

TheGPTbased on three bareKLdivergences has beenwell studied in information
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geometry. The validity condition of the GPT based on three bare KL divergences

is the isoenergetic condition. It determines the minimum KL divergence from a

probability distribution to a set of canonical distributions (one-parameter geodesic

line of canonical distribution). The principle of maximum entropy is derived from

the GPT based on three bare KL divergences. We show the details in Appendix D.

Since the (information) entropy is dimensionless and the principle of maxi-

mum entropy is based on dimensionless KL divergences, we expect that the maxi-

mum work formulation is based on energy-dimensional divergences. Our energy-

dimensional divergence is equal to (the minus of) the right-hand-side of Eq. (3.2)

for the pair of the initial probability distribution and the initial canonical distribu-

tion. The change of scaled KL divergences is the (dissipative) work in Eq. (2.31)

for a cyclic process. The minimization of this scaled KL divergence means the

maximization of the work in Eq. (3.2).

The GPT based on scaled KL divergences holds as the following theorem:

Theorem 1. If the isentropic condition is satisfied, i.e.,

([dcan,0( Ṽ)] = ([d0], (3.5)

then the GPT holds,

U−1� ! [d0 ‖ dcan,0(U)] = Ṽ−1� ! [d0 ‖ dcan,0( Ṽ)]+U−1� ! [dcan,0( Ṽ) ‖ dcan,0(U)] .
(3.6)
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Proof. The derivation is straightforward,

U−1� ! [d0 ‖ dcan,0(U)] − Ṽ−1� ! [d0 ‖ dcan,0( Ṽ)] − U−1� ! [dcan,0( Ṽ) ‖ dcan,0(U)]

= −U−1([d0] − �0(U) + 〈�0 |d0〉 + Ṽ−1([d0] + �0( Ṽ) − 〈�0 |d0〉

+ U−1([dcan,0( Ṽ)] + �0(U) − 〈�0 |dcan,0( Ṽ)〉

= −U−1([d0] + Ṽ−1([d0] + �0( Ṽ) + U−1([dcan,0( Ṽ)] − 〈�0 |dcan,0( Ṽ)〉. (3.7)

Substituting the following relation into Eq. (3.7),

�0( Ṽ) − 〈�0 |dcan,0( Ṽ)〉 = −Ṽ−1([dcan,0( Ṽ)], (3.8)

we obtain

U−1� ! [d0 ‖ dcan,0(U)] − Ṽ−1� ! [d0 ‖ dcan,0( Ṽ)] − U−1� ! [dcan,0( Ṽ) ‖ dcan,0(U)]

= −U−1([d0] + Ṽ−1([d0] + U−1([dcan,0( Ṽ)] − Ṽ−1([dcan,0( Ṽ)]

=

(
Ṽ−1 − U−1

) (
([d0] − ([dcan,0( Ṽ)]

)
= 0, (3.9)

where we used the isentropic condition (3.5) in the last line. �

From Eq. (3.6) and the non-negativity of the scaled KL divergence, we immedi-

ately obtain the following inequality,

−U−1� ! [d0 ‖ dcan,0(U)] ≤ −Ṽ−1� ! [d0 ‖ dcan,0( Ṽ)] . (3.10)

Since Eq. (3.2) is valid for any U, the right-hand-side of Eq. (3.10) provides the

greatest lower bound of, consistent with the isentropic condition (3.5); hence, its

negative gives the maximum extractable work from the system.

The geometric image of the GPT based on scaled KL divergences is illustrated
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in Figure 3. The set of canonical distributions is drawn as a line parametrized by

the temperature. The (geodesic) line connecting d0 and dcan,0( Ṽ) on the isentropic

surface is orthogonal to the parametric line of canonical distributions in terms of the

scaled KL divergence. The difference in structure between using dimensionless KL

divergences and scaled KL divergences, in particular the change of metric and the

dually flat structurewith Bregman divergence in information geometry, are discussed

in detail in subsection 3.2 and 3.3.

!"

!#$%,"(()

!#$%,"( *+)

Isentropic 
surface

(,-./0[!" ∥ !#$%," ( ]

(,-./0[!#$%," *+ ∥ !#$%,"(()]

*+,-./0[!" ∥ !#$%," *+ ] Set of canonical 
distribution

Figure 3: The image of the GPT based on the scaled KL divergences.

3.2 Geometric structure of the scaled KL divergence

In this subsection, we show the new geometric structure that scaled KL divergence

leads to. First, we briefly explain the Bregman divergence and the dually flat

structure in information geometry. The KL divergence is a Bregman divergence with

−U� (U) as a convex function and its Riemannian metric is the Fisher information

matrix. On the other hand, we show that the scaled KL divergence is the Bregman

divergence with −� (U) as a convex function. The Riemannian metric is also scaled
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by temperature and the way of taking the coordinates in the parameter space has

changed.

The space of interest in information geometry is a statistical manifold constructed

from probability distributions. It is assumed that a point in =-dimensional manifold

is represented using =-dimensional coordinates. One example of such a manifold is

a family of one-dimensional Gaussian distributions. Since the Gaussian distribution

is uniquely determined by the mean ` and the variance f2 as

?(G; `, f2) = 1
√

2cf2
exp

{
− (G − `)

2

2f2

}
, (3.11)

the family of Gaussian distributions can be regarded as a two-dimensional manifold

if we take (`, f2) as the coordinate system.

In information geometry, the exponential family plays an important role. The

exponential family consists of exponential distributions in the form of

d(G;θ) = exp {θ · H (G) − k(θ)} (3.12)

where

θ = (\ (0) , \ (1) , · · · , \ (=−1)), (3.13)

H(G) = (H (0) (G),H (1) (G), · · · ,H (=−1) (G)), (3.14)

and k(θ) is the potential function determined by the normalization condition as

k(θ) = log 〈1| exp (θ · H)〉 . (3.15)

The parameter that identifies the distribution is θ. Assuming that −H (0) is the

Hamiltonian of the system, �, then the parameter θcan = (U, 0, · · · , 0) identifies the
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canonical distributions

d(G;θcan) = exp {U(� (U) − � (G))} = dcan(G;U) (3.16)

where the potential function and the free energy are connected by the following

relationship: k(θcan) = −U� (U).
We then introduce a Bregman divergence between two exponential distributions.

It is derived naturally from the convex function and we use k(θ) as the convex

function. The convexity of k(θ) is guaranteed by the fact that its Hessian is a

positive definite matrix because a simple calculation shows that

m2

m\ (8)m\ ( 9)
k(θ) =

〈(
H (8) − 〈H (8) |d(θ)〉

) (
H ( 9) − 〈H ( 9) |d(θ)〉

)
|d(θ)

〉
(3.17)

which means that the Hessian is a variance-covariance matrix and it is positive

definite in general. The Bregman divergence is defined as follows:

� [θ� ‖ θ�] = k(θ�) − k(θ�) − ∇k(θ�) · (θ� − θ�). (3.18)

where we note that ∇ ≡
(
m/m\ (0) , m/m\ (1) , · · · , m/m\ (=−1)

)
. The intuitive image of

Bregman divergence in the one-dimensional case is shown in Figure 4. The Bregman

divergence from d(θ�) to d(θ�) is defined by how far the potential function at θ�
is from the tangent plane at θ�. Eq. (3.18) is guaranteed to be always positive due to

the convexity of k, and it also satisfies all three conditions of divergence written at

the beginning of the previous subsection. Referring only to condition (3), the metric

tensor 68, 9 corresponds to the Hessian of k. Eq. (3.17) is another way of writing the

Fisher information matrix, which is a metric tensor of KL divergence.

The Bregman divergence leads to a dual structure. Legendre transformation

on the previous coordinates θ with a convex function k gives us a new coordinate
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𝑧 = 𝜓(𝜽)
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Figure 4: One-dimensional picture of the Bregman divergence derived from the
convex function k(θ) and its tangent plane.

system θ∗ as

θ∗ = ∇k(θ). (3.19)

This dual coordinate θ∗ is often referred to as η in information geometry. By

defining dual convex function for θ∗ as

k∗(θ∗) = max
θ
{θ · θ∗ − k(θ)} , (3.20)

we obtain two coordinate systems. These are transformed to and from each other by

Legendre transformation:

θ∗ = ∇k(θ), k∗(θ∗) = θ · θ∗ − k(θ) (3.21)

θ = ∇k∗(θ∗), k(θ) = θ∗ · θ − k∗(θ∗) (3.22)

The dual Bregman divergence is derived from the dual coordinate θ∗ and dual
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convex function k∗,

�∗ [θ∗� ‖ θ
∗
�] = k∗(θ∗�) − k

∗(θ∗�) − ∇k∗(θ∗�) · (θ∗� − θ
∗
�)

= θ� · θ∗� − k(θ�) − θ� · θ
∗
� + k(θ�) − θ� · (θ∗� − θ

∗
�)

= θ� · ∇k(θ�) − k(θ�) + k(θ�) − θ� · ∇k(θ�)

= k(θ�) − k(θ�) − ∇k(θ�) · (θ� − θ�)

= � [θ� ‖ θ�] . (3.23)

We have mentioned that there is no symmetry in divergence, but when we consider

the dual coordinate, the dual structure is established: a Bregman divergence with a

different order of two arguments becomes a dual Bregman divergence

�∗ [θ∗� ‖ θ
∗
�] = � [θ� ‖ θ�],

which is the most interesting and important result of information geometry.

Next, we give a proof of the generalized Pythagorean theorem (GPT) and its

geometric structure based on the Bregman divergence. Suppose there exist a flat

coordinate system (the affine coordinate system) θ. We refer to the curved line

θ(D) = aD + b, (3.24)

as geodesic line, where a and b are the constant vectors and D is the real parameter.

For the dual coordinates θ∗, we also refer to the curved line

θ∗(D) = cD + d, (3.25)

as dual geodesic line, where c and d are the constant vectors. Of course, the geodesic

line and dual geodesic line are different and they are not straight lines from the point
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of view of different coordinate systems. Two geodesic lines (or dual geodesic lines)

are orthogonal if their tangent vectors are orthogonal to each other.

The GPT

� [% ‖ '] = � [% ‖ &] + � [& ‖ '], (3.26)

holds when the geodesic line connecting % and & and the dual geodesic line con-

necting & and ' are orthogonal. Let the coordinates of points %, & and ' be θ%,

θ& and θ' respectively, and using the definition of Bregman divergence (3.18), we

obtain

� [% ‖ &] + � [& ‖ '] − � [% ‖ '] = (θ% − θ&) · (θ∗' − θ∗&). (3.27)

The geodesic line connecting % and & is written as

θ(D) = Dθ% + (1 − D)θ& , (3.28)

and
m

mD
θ(D) = θ% − θ& . (3.29)

The dual geodesic line connecting & and ' is also written as

θ∗(D) = (1 − D)θ∗& + Dθ
∗
' (3.30)

and
m

mD
θ∗(D) = θ∗' − θ∗& . (3.31)

Since these are orthogonal we get

(θ% − θ&) · (θ∗' − θ∗&) = 0 (3.32)

which means that the right-hand side of Eq. (3.27) is zero. We note that the dot
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product in Eq. (3.32) cannot be defined without the Fisher metric 68 9 mentioned

earlier since it is an inner product on a statistical manifold which is a Riemannian

manifold.

It is already known that the KL divergence is the Bregman divergence of the

exponential family, where the coordinate system is θ and the convex function is

k(θ). The dual coordinate is

θ∗ = ∇k(θ) = −〈H |d(θ)〉, (3.33)

and the dual convex function is

k∗(θ∗) = −([d(θ)] . (3.34)

The scaled KL divergence introduced in the previous subsection is also derived

as a Bregman divergence when considering two canonical distributions. In this

case, we take (the minus of) the free energy −� (U) of the canonical distribution

as a convex function and U−1 as the coordinate system instead of U(= −\ (0)). The
Bregman divergence is as follows:

� [U−1
� ‖ U

−1
� ] = −� (U�) + � (U�) + ∇U−1

�
� (U�) · (U−1

� − U
−1
� )

= −� (U�) + � (U�) − ([dcan(U�)] (U−1
� − U

−1
� )

= −� (U�) + 〈� |dcan(U�)〉 − U−1
� ([dcan(U�)]

= −U−1
� 〈log dcan(U�) |dcan(U�)〉 + U−1

� 〈log dcan(U�) |dcan(U�)〉

= U−1
� � ! [dcan(U�) ‖ dcan(U�)] (3.35)

The right-hand-side of Eq. (3.35) is the scaled KL divergence itself. The dual coordi-

nate is entropy ([dcan(U)] and the dual convex function is energy � = 〈� |dcan(U)〉.
Therefore, the condition of the GPT in Eq. (3.9) is in the form of a product of
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difference of temperature and difference of entropy. This is a completely different

geometrical structure to that of the bare KL divergence as you can see by comparing

Figure 3 and Figure 12 in Appendix D.

The differences in structure is seen from considering local KL divergence for a

canonical distribution. In the case of bare KL divergence,

� ! [dcan(U) ‖ dcan(U + 3U)] =
1
2
3UΔ�23U

=
1
2
3U
3 (−�)
3U

3U

=
1
2
3U3 (−�) (3.36)

where Δ�2 is the Fisher information matrix. On the other hand, the scaled local KL

divergence is also written as

U−1� ! [dcan(U) ‖ dcan(U + 3U)] =
1
2
3U
Δ�2

U
3U

=
1
2
3 (U−1) 3(

3U
3U

=
1
2
3 (U−1)3(. (3.37)

The dual orthogonality, 3U3 (−�) is changed to 3 (U−1)3( by the scale transforma-

tion.

3.3 Structural changes due to scaling divergence

More generally, we consider the divergence in the form of theKL divergence between

d(θ�) and d(θ�) divided by the scalar quantity _� which depends on d(θ�), i.e.,
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_−1
�
� ! [d(θ�) ‖ d(θ�)]. The condition under which the GPT holds is

1
_�
� ! [d(θ�) ‖ d(θ�)] =

1
_�
� ! [d(θ�) ‖ d(θ�)] +

1
_�
� ! [d(θ�) ‖ d(θ�)]

⇔ (([d(θ�)] − ([d(θ�)]) ·
(

1
_�
− 1
_�

)
+ (∇k(θ�) − ∇k(θ�)) ·

(
θ�
_�
− θ�
_�

)
= 0

⇔ ([d(θ�)] = ([d(θ�)] and
θ�
_�

=
θ�
_�
. (3.38)

Fig. 5 shows an image of this situation. The KL divergence scaled by temperature,

𝑝(𝜽!)

𝑝(𝜽")

𝑝(𝜽#)

𝜽# = 𝜽"
𝜆#
𝜆"

Isentropic surface

Figure 5: The visual image of Eq. (3.38). The GPT holds when the isentropic
condition and the scaling condition θ�/_� = θ�/_� are satisfied.

introduced in subsection 3.1, satisfies this latter condition θ�/_� = θ�/_� because

the second argument (distribution) of the divergence was restricted to the canonical

distribution. Thus, only the isentropic condition is needed. The set of canonical

distributions is a kind of special subspace that satisfies the conditionθ�/_� = θ�/_� ,
and the scaled KL divergence is one of the examples of this geometric structure.

In the above setup, we scaled by the quantity associatedwith the second argument

of KL divergence. Now, let us consider scaling with the quantity associated with the
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first argument, i.e., _−1
�
� ! [d(θ�) ‖ d(θ�)]. The condition under which the GPT

holds is

1
_�
� ! [d(θ�) ‖ d(θ�)] =

1
_�
� ! [d(θ�) ‖ d(θ�)] +

1
_�
� ! [d(θ�) ‖ d(θ�)]

⇔ (k(θ�) − k(θ�)) ·
(

1
_�
− 1
_�

)
+

(
∇k(θ�)
_�

− ∇k(θ�)
_�

)
· (θ� − θ�) = 0

⇔ k(θ�) = k(θ�) and
∇k(θ�)
_�

=
∇k(θ�)
_�

. (3.39)

Fig. 6 shows an image of this situation. If we restrict to the space of canonical

𝜌(𝜽!)

𝜌(𝜽")

𝜌(𝜽#)
∇𝜓 𝜽! =

𝜆!
𝜆"
∇𝜓 𝜽"

isopotential surface

Figure 6: The visual image of Eq. (3.39). The GPT holds when the isopotential
condition and the scaling condition ∇k(θ�)/_� = ∇k(θ�)/_� are satisfied.

distributions, k = −U� (U) and ∇k = −� . Therefore, if d(θ�) and d(θ�) are
canonical distributions and _ is taken by energy, only the isopotential condition

remains. This is the KL divergence scaled by the inverse of the energy. For this

scaled divergence, the space of canonical distributions is also a special subspace.

Scaling by a quantity related to the first argument of divergence appears when

considering the "cost performance" of a system in contact with a finite heat bath.

"Cost performance" is defined by the work obtained in ratio to the size of the finite
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heat bath. Therefore, the KL divergence scaled by �−1 may be useful in considering

the "cost performance" of heat engines in the future.

Table 1 summarizes the dual structure of the three divergences we have obtained

so far. We use these three divergences depending on what we want to keep constant

and what we want to optimize. First, the optimization of KL divergence leads to

the maximum entropy principle under constant energy. Second, the optimization of

KL divergence scaled by U−1 leads to the maximum work under constant entropy.

Finally, the optimization of KL divergence scaled by �−1 leads to the maximum

temperature under constant potential.

Table 1: Dual structure of the three divergences.

Bregman divergence coordinates convex
function

dual
coordinates

dual convex
function

KL divergence U −U� (U) −� −(
KL divergence
scaled by U−1 U−1 −� (U) ( �

KL divergence
scaled by �−1 �−1 −�−1( U� (U) U

3.4 The case of non-cyclic processes

The maximum work formulation of the generalized second law for a non-cyclic

operation (Δ� (U) ≠ 0) may also be obtained by the GPT based on the scaled KL

divergences. The work inequality is written as Eq. (2.32),

, ≥ Δ� (U) − U−1� ! [d0 ‖ dcan,0(U)] .

When Ṽ is the inverse effective temperature determined by the isentropic condition

(2.35), i.e.,

([dcan,) ( Ṽ)] = ([d0],
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the following inequality holds for any U,

Δ� ( Ṽ) − Ṽ−1� ! [d0 ‖ dcan,0( Ṽ)] ≥ Δ� (U) − U−1� ! [d0 ‖ dcan,0(U)] (3.40)

which means that the inverse effective temperature maximizes the right-hand-side

of Eq. (2.32).

We prove Eq. (3.40) as follows. First, we rewrite the difference between the two

sides of Eq. (3.40) in terms of scaled KL divergences as,

Δ� ( Ṽ) − Ṽ−1� ! [d0 ‖ dcan,0( Ṽ)] − Δ� (U) + U−1� ! [d0 ‖ dcan,0(U)]

= �) ( Ṽ) − �0( Ṽ) + Ṽ−1([d0] + �0( Ṽ) − 〈�0 |d0〉

− �) (U) + �0(U) − U−1([d0] − �0(U) + 〈�0 |d0〉

= −Ṽ−1 {
−([d0] − Ṽ�) ( Ṽ) + Ṽ〈�) |d0〉

}
+ U−1 {−([d0] − U�) (U) + U〈�) |d0〉}

= −Ṽ−1� ! [d0 ‖ dcan,) ( Ṽ)] + U−1� ! [d0 ‖ dcan,) (U)] . (3.41)

Then the next theorem holds:

Theorem 2. When the isentropic condition (2.35) is given, the GPT based on the

scaled KL divergences holds as

U−1� ! [d0 ‖ dcan,) (U)] = Ṽ−1� ! [d0 ‖ dcan,) ( Ṽ)]+U−1� ! [dcan,) ( Ṽ) ‖ dcan,) (U)] .
(3.42)
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Proof. Eq. (3.42) is derived straightforwardly,

U−1� ! [d0 ‖ dcan,) (U)] − Ṽ−1� ! [d0 ‖ dcan,) ( Ṽ)] − U−1� ! [dcan,) ( Ṽ) ‖ dcan,) (U)]

= −U−1([d0] − �) (U) + 〈�) |d0〉 + Ṽ−1([d0] + �) ( Ṽ) − 〈�) |d0〉

+ U−1([dcan,) ( Ṽ)] + �) (U) − 〈�) |dcan,) ( Ṽ)〉

= −U−1([d0] + Ṽ−1([d0] + �) ( Ṽ) + U−1([dcan,) ( Ṽ)] − 〈�) |dcan,) ( Ṽ)〉

= −U−1([d0] + Ṽ−1([d0] + U−1([dcan,) ( Ṽ)] − Ṽ−1([dcan,) ( Ṽ)]

= ( Ṽ−1 − U−1)
(
([d0] − ([dcan,) ( Ṽ)]

)
= 0, (3.43)

where we used the relation,

�) ( Ṽ) − 〈�) |dcan,) ( Ṽ)〉 = −Ṽ−1([dcan,) ( Ṽ)], (3.44)

and the isentropic condition Eq. (2.35). �

The GPT (3.42) is rearranged to yield the right-hand-side of Eq. (3.41),

− Ṽ−1� ! [d0 ‖ dcan,) ( Ṽ)] + U−1� ! [d0 ‖ dcan,) (U)]

= U−1� ! [dcan,) ( Ṽ) ‖ dcan,) (U)] ≥ 0, (3.45)

guaranteeing the non-negativity of the left-hand-side of Eq. (3.41) and the validity

of Eq. (3.40).

3.5 Example 1: thermally isolated ideal gas

A simple example that illustrates the GPT is a thermally isolated ideal gas that is

confined to a container with a movable wall. Suppose that initially the volume of gas

is +8 and the temperature is V−1
8
. The wall is then adiabatically moved, expanding
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the volume to + 5 as work is extracted from the gas. This is a non-cyclic process.

The GPT for scaled KL divergences, in this case, is given by Eq. (3.42). We

describe the initial state and the final canonical state using a Maxwellian velocity

distribution dMax as d0 = dMax(V8, +8) and dcan,) (U) = dMax(U,+ 5 ), where

dMax(U,+) =
1

/ (U,+)

3#∏
a=1

exp
(
−U

?2
a

2<

)
j+ (3.46)

where # is the number of particles and ?a and < are momentum and mass of a

particle, respectively. The indicator function j+ serves to indicate the configuration

space dependence of the distribution and / is the partition function,

/ (U,+) = +
#

#!

(
2c<
ℎ2U

)3#/2
(3.47)

where ℎ represents Planck constant.

The GPT is then written as

U−1� ! [dMax(V8, +8) ‖ dMax(U,+ 5 )]

= Ṽ−1� ! [dMax(V8, +8) ‖ dMax( Ṽ, + 5 )] + U−1� ! [dMax( Ṽ, + 5 ) ‖ dMax(U,+ 5 )],
(3.48)

which holds for the effective temperature Ṽ determined by the following condition,

Ṽ =

(
+ 5

+8

)2/3
V8 . (3.49)
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The proof is straightforward using Eqs. (3.46) and (3.47) as

U−1� ! [dMax(V8, +8) ‖ dMax(U,+ 5 )]

− Ṽ−1� ! [dMax(V8, +8) ‖ dMax( Ṽ, + 5 )] − U−1� ! [dMax( Ṽ, + 5 ) ‖ dMax(U,+ 5 )]

= U−1 log
(
/ (U,+ 5 )
/ (V8, +8)

)
− 3

2
#

(
U−1 − V−1

8

)
− Ṽ−1 log

(
/ ( Ṽ, + 5 )
/ (V8, +8)

)
+ 3

2
#

(
Ṽ−1 − V−1

8

)
− U−1 log

(
/ (U,+ 5 )
/ ( Ṽ, + 5 )

)
+ 3

2
#

(
U−1 − Ṽ−1

)
= −U−1 log (/ (V8, +8)) − Ṽ−1 log

(
/ ( Ṽ, + 5 )

)
+ Ṽ−1 log (/ (V8, +8)) + U−1 log

(
/ ( Ṽ, + 5 )

)
= log

(
/ ( Ṽ, + 5 )
/ (V8, +8)

) (
U−1 − Ṽ−1

)
= log

(
+#
5
Ṽ−3#/2

+#
8
V
−3#/2
8

) (
U−1 − Ṽ−1

)
=

{
log

(
+ 5

+8

)#
− log

(
Ṽ

V8

)3#/2} (
U−1 − Ṽ−1

)
(3.50)

where we used the relation,

U−1
2 � ! [dMax(U1, +1) ‖ dMax(U2, +2)] = U−1

2 log
(
/ (U2, +2)
/ (U1, +1)

)
− 3

2
#

(
U−1

2 − U
−1
1

)
.

(3.51)

In order for Eq. (3.50) to become zero, we must have

log
(
+ 5

+8

)#
− log

(
Ṽ

V8

)3#/2
= 0

⇔
(
+ 5

+8

)#
=

(
Ṽ

V8

)3#/2

(3.52)

which leads to the condition (3.49).
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Eq. (3.48) guarantees that the final state of a Maxwellian velocity distribution

with the effective temperature Ṽ−1 gives the maximum work as discussed in this

section. The condition of effective temperature (3.49) is the well-known polytropic

process equation. Of course, it can also be derived from the isentropic condition

and the Sackur-Tetrode equation for the entropy of an ideal gas.

3.6 Example 2: two-level quantum system

We apply the GPT to an optimization problem in nonequilibrium statistical me-

chanics. From the generalized maximum work formulation, the maximum work is

extracted by an operation under which the final state is the canonical state with the

final Hamiltonian and the effective temperature. The final canonical state with the

effective temperature is the ideally optimal state to extract the maximum work. The

ideally optimal state may be difficult to realize experimentally. It is important to

figure out what is the "closest" (minimum divergence) state from the ideally optimal

state in a set of realizable final states. The "closest" state is the experimentally

optimal state to extract work that satisfies the orthogonality condition.

3.6.1 A spin-1/2 particle operated by a magnetic field

Weconsider a thermally isolated two-level quantum system as a simple example [34].

The application of nonequilibrium statistical mechanics to few-degrees-of-freedom

quantum systems is a current topic of much interest. Time-dependent two-level

quantum systems often appear in the context of matter-field interactions or nuclear

magnetic resonance. Such systems have been used to demonstrate the validity of the

fluctuation relations of modern nonequilibrium statistical mechanics [47, 49].

We consider a spin-1/2 particle embedded in a magnetic field that is controlled
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[50]. The Hamiltonian of the system is

�C =
ℏl

2
(cos qCfI + sin qCfG) , (3.53)

where f8 (8 = G, H, I) are the standard Pauli matrices and we choose the direction

of the magnetic field restricted to the G − I plane with qC the rotation-angle of the
magnetic field around the H-axis at time C. The Hamiltonian is rewritten by using

rotation operators in spin space,

�C =
ℏl

2
e−ifHqC/2fIeifHqC/2. (3.54)

The eigenvalues of the Hamiltonian are �0 = −ℏl/2 and �1 = ℏl/2, which we

identify as the ground and excited state energies, respectively.

The spin-1/2 particle is externally operated from C = 0 to C = ) . The operation

is represented by the time-dependent angle in the Hamiltonian. We choose a cyclic

operation, q0 = 0 at C = 0 and q) = 2c at C = ) . The angle increases from 0 to 2c

monotonically and qg = c at C = g. The Hamiltonian is proportional to the Pauli

matrix fI at C = 0. It is proportional to −fI at C = g. When C = ) the Hamiltonian

returns to its original form at C = 0.

We discuss how to extract themaximumwork from a simple noneqilibrium initial

state such as a pure excited state [32–34]. The maximum work can be obtained by

the cyclic operation including two processes:

1. The short stabilization process for C ∈ [0, g) in which the pure excited state

becomes the ground state by changing �0 to �g = −�0.

2. The restoration process for C ∈ [g, )) to the original Hamiltonian, �) = �0,

without any transition to the excited state.

These processes are analogous to those that have been discussed on how to extract
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the maximum work from a noneqilibrium initial state in a thermodynamic system

[32–34]. The first corresponds to the stabilization process to prevent spontaneous

relaxation in a thermodynamic system. For simplicity we consider here the sudden

process, g → 0. The second is generally a quasi-static (isentropic) process without

dissipation. After the sudden process, the initial state does not change and the

Hamiltonian changes as �0+ = −�0. The control parameter of our operation is

the rate at which the field is rotated. We will find the optimal angular frequency

to extract work. The solutions for finite frequencies correspond to dissipationless

non-quasi-static processes.

The Schrödinger equation is

iℏ
m

mC
|kC〉 = �C |kC〉 =

ℏl

2
e−ifHqC/2fIeifHqC/2 |kC〉. (3.55)

We choose a simple linear time dependence for the rotation angle,

qC = c +ΩC for 0 < C ≤ ) (3.56)

whereΩ = c/) is the adjustable angular frequency. Then, the Schrödinger equation

is easily solved by using the rotating amplitude eifHqC/2 |kC〉. The solution is written
as,

|kC〉 = DC |k0〉 (3.57)

where the time evolution operator DC is given as

DC = e−i(c+ΩC)fH/2e−i(lfI−ΩfH)C/2eicfH/2. (3.58)

3.6.2 A vector representation of a quantum state

We introduce a vector representation of a quantum state. This section 3.6.2 prepares

for the optimization of the rotation-angle frequency discussed in the next section
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3.6.3. A quantum state is represented as a point vector in parameter space in

information geometry. The orthogonality condition from the GPT is written in

terms of these vectors [16, 17].

A quantum state is written as a 2 × 2 density matrix that is expanded as a

linear combination of four Hermitian matrixes: the unit matrix � and the three Pauli

matrixes f8 (8 = G, H, I). Any state except pure states is written as a positive definite
density matrix,

d =
1
2
� − 1

2
[̂ · f tanh |[ | (3.59)

where [ is a three dimensional real vector, [̂ = [/|[ | is its unit vector, and f =

(fG , fH, fI). The condition of total probability is obvious, Tr[d] = 1. The positive

definiteness is guaranteed from the range, | tanh |[ | | < 1, since the eigenvalues of

d are (1 ± tanh |[ |)/2. A density matrix corresponding to a pure state is positive

semi-definite. We consider the pure state in the limit of | tanh |[ | | → 1 for |[ | → ∞.
The pure ground state of �0 is d = (� − fI)/2 where [̂ = (0, 0, 1) and the pure

excited state is d = (� + fI)/2 where [̂ = (0, 0,−1). Hereafter, we call the above

representation based on a linear combination of four Hermitian matrixes as the

M-representation.

The parameter vector [ naturally appears in an exponential-type representation

(E-representation),

d =
e−[·f

/
. (3.60)

where

/ = Tr[e−[·f] = 2 cosh |[ |. (3.61)

The equivalence between two representations is confirmed by the Euler-like formula,

e−[·f = cosh |[ |� − [̂ · f sinh |[ |. (3.62)
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We write the nonequilibrium initial state at time C = 0 as

d0 =
1
2
� − 1

2
[̂0 · f tanh |[0 |. (3.63)

We choose [̂0 = (0,− sin i,− cos i) ( |i| < c/2) for the nonequilibrium initial state.

From the condition ( |i| < c/2), the initial energy �0 = Tr[d0�0] is positive so that
work is extractable. We chose the G component [̂0,G = 0 for simplicity. We may be

able to adjust [̂0,G by an additional operation around the H-axis.

From the solution of the Schrödinger equation, the time evolution of the density

matrix is given,

dC = D
Cd0D

−C =
1
2
� − 1

2
[̂C · f tanh |[C |, (3.64)

where

[C =
1
2

Tr[fDC ([0 · f)D−C] . (3.65)

We used the orthogonality of Pauli matrixes, Tr[f8f9 ] = 2X8, 9 . The norm |[C | is
constant in time under the unitary time evolution,

|[C | =
√

1
2

Tr[(DC ([0 · f)D−C)2] = |[0 |. (3.66)

The final state at time C = ) is written as

d) =
1
2
� − 1

2
[̂) · f tanh |[) |. (3.67)

We note that the time period ) may also be considered as the control parameter in

our operation, since the angular frequency Ω = c/) . We will discuss the optimal

final state to extract work in the section 3.6.3.

The canonical state at time C (C ∈ (0, )]) with the inverse of the effective
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temperature Ṽ is written in E-representation as

dcan,C =
e−Ṽ�C
/can

=
e−[can,C ·f

/can
(3.68)

where [can,C = Tr[fṼ�C]/2 and

/can = Tr[e−Ṽ�C ] = 2 cosh
(
Ṽℏl

2

)
. (3.69)

The partition function /can is constant in time, since the trace is preserved under the

rotation operation. The initial canonical state before the sudden process is the same

as the final canonical state because of the cyclic operation. The initial/final state is

written in E-representation as

dcan,0/) =
e−[can,0/) ·f

/can
(3.70)

where 0/) means 0 or ) , |[can,0/) | = Ṽℏl/2 and [̂can,0/) = (0, 0, 1). Similarly, the

initial/final canonical state is written in M-representation as

dcan,0/) =
1
2
� − 1

2
[̂can,0/) · f tanh

(
Ṽℏl

2

)
. (3.71)

We note that the final canonical state does not depend on the controllable time period

) , since q) = 2c for any ) .

Webriefly discuss the isentropic condition to determine the effective temperature,

([dcan,) ( Ṽ)] = ([d0]. The entropy of the initial state is calculated by using both E-
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and M-representations,

([d0] = −Tr[d0 log d0]

= −Tr[(1
2
� − 1

2
[̂0 · f tanh |[0 |) (− log(2 cosh |[0 |)� − [0 · f)]

= log(2 cosh |[0 |) − |[0 | tanh |[0 |. (3.72)

Similarly, the entropy of the final canonical state is

([dcan,) ( Ṽ)] = log(2 cosh |[can,) |) − |[can,) | tanh |[can,) | (3.73)

where |[can,) | = Ṽℏl/2. The isentropic condition is simply rewritten as |[can,) | =
|[0 |. The effective temperature is determined from the initial condition,

Ṽℏl

2
= |[0 |. (3.74)

3.6.3 Optimization of the rotation rate

We consider the quantum mechanical version of the work identity Eq. (2.31) for the

effective temperature Ṽ,

, = Ṽ−1� ! [d) ‖ dcan,) ( Ṽ)] − Ṽ−1� ! [d0 ‖ dcan,0( Ṽ)] (3.75)

where Δ� ( Ṽ) = 0 for a cyclic operation is used. The quantum relative entropy is

defined as the following quantum-mechanical analog of the KL divergence,

� ! [d� ‖ d�] = 〈log d� |d�〉 − 〈log d� |d�〉 (3.76)
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where the bra-ket notation is defined as

〈�|�〉 = Tr[��] . (3.77)

We used the same notation � ! [d� ‖ d�] for the quantum relative entropy since

Eq. (3.76) is the same as Eq. (2.24).

The extractable work is the negative of the work done on the system,

−, = ,max − Ṽ−1� ! [d) ‖ dcan,) ( Ṽ)] (3.78)

where the maximum extractable work is defined as

,max = Ṽ
−1� ! [d0 ‖ dcan,0( Ṽ)] ≥ 0. (3.79)

Now we try to find the optimal operation with the angular frequency Ω∗ = c/)∗ for
which the final state satisfies the minimum scaled KL divergence,

)∗ = arg min
)
Ṽ−1� ! [d) ‖ dcan,0( Ṽ)] . (3.80)

where we replaced the final canonical state with the initial canonical state to make

clear the absence of ) dependence of the final canonical state, since �) = �0 for

any ) .

First we consider the validity condition of the GPT Δ = 0 [51], where

Δ = Ṽ−1� ! [d) ‖ dcan,0( Ṽ)] − Ṽ−1� ! [d) ‖ d)∗] − Ṽ−1� ! [d)∗ ‖ dcan,0( Ṽ)] .
(3.81)

The KL divergence may be divided into the sum of the negative entropy and the

cross entropy,

� ! [d� ‖ d�] = −([d�] + (C [d�, d�], (3.82)
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where the cross entropy is

(C [d�, d�] = −Tr[d� log d�] . (3.83)

After substituting the above sum into Δ,

Δ = Ṽ−1(C [d) , dcan,0( Ṽ)] − Ṽ−1(C [d) , d)∗]

+ Ṽ−1(C [d)∗ , d)∗] − Ṽ−1(C [d)∗ , dcan,0( Ṽ)] . (3.84)

where we used ([d)∗] = (C [d)∗ , d)∗]. Similar to the entropy, the cross entropy

between state A and state B is calculated by using both E- and M-representations,

([d�, d�] = −Tr[d� log d�]

= log
(
2 cosh

(
Ṽℏl

2

))
− Ṽℏl

2
tanh

(
Ṽℏl

2

)
[̂� · [̂� (3.85)

where we chose |[� | = |[� | = Ṽℏl/2. After substituting the above expression of

the cross entropy, we obtain,

Δ =
ℏl

2
tanh

(
Ṽℏl

2

)
([̂)∗ − [̂) ) · ([̂can,0 − [̂)∗). (3.86)

Quantum states are represented as vectors such as [) . The validity condition

of the GPT is written as the orthogonality condition ([̂)∗ − [̂) ) · ([̂can,0 − [̂)∗) = 0

in the vector space. In information geometry, a state is represented as a vector

in a space of parameters. The "distance" (square of length in the sense of the

Pythagorean theorem) between two states is measured through the divergence. In

nonequilibrium statistical mechanics, the energy-dimensional "distance" between

two states is measured through the scaled KL divergence.

Suppose [̂)∗ = [̂can,0, then the GPT is valid globally. The vector representation
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of the ideally optimal state to extract the maximum work is [̂can,0. However, if

[̂0,H ≠ 0, then [̂) cannot be the ideally optimal state [̂can,0 for any ) in general,

since the rotation is limited around the H-axis. Although any realizable final states

cannot be the ideally optimal state, we can figure out what is the "closest" (minimum

divergence) state from the ideally optimal state in a set of realizable final states. The

"closest" state is the experimentally optimal state to extract work and satisfies the

local orthogonal condition (see Figure 7).

!"#$%&'[)*∗ ∥ )-./,1 !" ]

Set of realizable final states

Tangent space at )*∗

)-./,1( !")

)*
)*∗

!"#$%&'[)* ∥ )*∗]

!"#$%&'[)* ∥ )-./,1 !" ]

Figure 7: TheGPT locally holdswhen the geodesic line connecting d)∗ and dcan,0( Ṽ)
is orthogonal to the tangent space at d)∗ . For any d) in the neighborhood of d)∗ , d)
is considered in the tangent space of d)∗ .

The validity condition of the local GPT becomes the following local orthogo-

nal condition between the tangent vector at d)∗ and the geodesic line connecting

dcan,0( Ṽ) and d)∗ ,

lim
)→)∗

Δ

)∗ − ) ∝
3[̂)∗

3)∗
· ([̂can,0 − [̂)∗) =

3[̂)∗

3)∗
· [̂can,0 ∝

3[̂)∗,I

3)∗
= 0 (3.87)
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where we used 3 ([̂) · [̂) )/3) = 31/3) = 0 and [̂can,0 = (0, 0, 1). [̂),I is written as

[̂),I =
1
2

Tr[fI (D) [̂0 · fD−) )] (3.88)

where

D) = e−icfHe−i(l)fI−cfH)/2eicfH/2. (3.89)

The calculation of 3[̂),I/3) is straightforward but tedious. We show only the final

result,

[̂),I =

{
1 − cos

(√
l2)2 + c2

)} c

l2)2 + c2
(
−l)[̂0,H + c[̂0,I

)
− [̂0,I (3.90)

and

3[̂),I

3)
=

2cl
l2)2 + c2 sin

(√
l2)2 + c2

2

) {
cos

(√
l2)2 + c2

2

)
l)

√
l2)2 + c2

(−l)[̂0,H + c[̂0,I)

+ sin

(√
l2)2 + c2

2

) (
− 2l)
l2)2 + c2

(
−l)[̂0,H + c[̂0,I

)
− [̂0,H

)}
(3.91)

There are clearly two ways of solving 3[̂)∗,I/3)∗ = 0 that yield two sets of

solutions for)∗. Oneway iswhen sin(
√
l2)∗2 + c2/2) = 0 so thatl)∗ =

√
4=2 − 1c

(= = 1, 2, ...). For these )∗, the scaled KL divergence Ṽ−1� ! [d)∗ ‖ dcan,0( Ṽ)]
takes the constant value since [̂)∗,I = −[̂0,I and the divergence only depends on [̂)∗,I
i.e.,

Ṽ−1� ! [d)∗ ‖ dcan,0( Ṽ)] =
ℏl

2
tanh

(
Ṽℏl

2

) (
1 − [̂)∗,I

)
=
ℏl

2
tanh

(
Ṽℏl

2

) (
1 + [̂0,I

)
(3.92)

This value also corresponds to the quasi-static process of ) → ∞(Ω → 0) as
illustrated in Figures 8 and 9.

Another set of solutions is obtained when the terms inside the curly brackets in
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Ω = 4/6

Figure 8: The scaled KL divergence Ṽ−1� ! [d) ‖ dcan,0( Ṽ)] versus Ω(= c/))
for i = 0 in [̂0, |[0 | = 1 and l = ℏ = 1. The dashed line shows the level of the
divergence for the quasi-static process, Ω = 0. The local minimums are realized for
) =
√

4=2 − 1c/l (= = 1, 2, ...) and the local maximums are realized for the second
series of solutions.

Eq. (3.91) sum to zero. (In this case a simple expression for )∗ is not available.)

The scaled KL divergences Ṽ−1� ! [d)∗ ‖ dcan,0( Ṽ)] at these )∗ become local

maximum or local minimum according to the initial conditions as illustrated in

Figures 8 and 9. For i = 0 in [̂0 (see Figure 8), the divergences of the second series

take local maximum. However, for i = c/3 (see Figure 9), the divergence takes

the globally minimum, 0.024792... at Ω∗ = c/)∗ = 0.358859... that is one of the

solutions of the second series. This interesting result tells us that we can extract

more work than the quasi-static process by choosing the optimal parameterΩ∗ in the

case of [̂0,H ≠ 0 [52]. The local GPT or the generalized projection theorem gives us

candidates of the realizable optimal state that is "closest" to the ideal optimal state.
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Figure 9: The scaled KL divergence Ṽ−1� ! [d) ‖ dcan,0( Ṽ)] versus Ω(= c/)) for
i = c/3 in [̂0, |[0 | = 1 and l = ℏ = 1. The dashed line shows the level of the
divergence for the quasi-static process, Ω = 0. The value of the globally minimum
is 0.024792... that is much lower than the level of the quasi-static process, Ω = 0.

4 Concluding remarks
In this thesis, we presented the generalized second lawand its alternative information-

geometric foundation. The generalized second law for a transition between nonequi-

librium states gives a perspective on some situations involving the interplay of energy

and information. We have presented the generalization for both thermally isolated

systems and systems in contact with a heat reservoir. As shown in Section 2, the

former case is more fundamental since a total isolated system may be divided into a

system of interest coupled to a larger system that acts as a reservoir.

In Section 3, we introduced "thermodynamic distance" as an energy-dimensional

KL divergence scaled by temperature. The change in "thermodynamic distance"

gives us the dissipative work. The GPT based on three "thermodynamic distances"

gives us a geometric interpretation of the maximum work formulation of the gener-

alized second law. From the nonequilibrium initial state, the canonical state with the
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effective temperature is the closest "point" in "thermodynamic distance." Since our

new concept of "thermodynamic distance" has an important role in nonequilibrium

statistical mechanics, it can also be called "thermodynamic divergence."

The most important result in this paper is that the geometric structure based on

theKL divergence scaled by a variable temperature is different from that based on the

bare KL divergence. Scaling the divergence with variable temperature completely

changes the geometrical structure, such as how to take the coordinate systems and

the orthogonal conditions in the sense of the GPT. Conversely, scaled divergences

appear by taking different coordinates and convex functions. We would have failed

to recognize this result if we had only considered isothermal systems, as many

other studies have done. For isothermal processes with constant temperature T ,
multiplying by temperature simply acts as a constant scale factor. It does not change

the geometrical structure. The validity condition of the GPT based on the bare

KL divergences is an isoenergetic condition. On the other hand, for a variable

temperature, the validity condition of the GPT based on the energy-scaled KL

divergences is an isentropic condition.

The geometrical interpretation of the generalized maximum work formulation

gives us a systematic method in figuring out a protocol to realize the optimal op-

eration. In this thesis, we applied the geometrical interpretation of the generalized

maximum work formulation to a simple two-level quantum system. The optimal

cyclic operation to extract work from a nonequilibrium state was determined by min-

imalizing the scaled KL divergence between the final state and the final canonical

state.

In Appendix A, we extended the information geometrical interpretation based

on the scaled KL divergence to the case of Tsallis statistics. In the framework of

Tsallis’s @-functions, Amari-Ohara’s @-divergence is a Bregman divergence, and the

GPT holds. By scaling this @-divergence with temperature again, a geometrical

structure appears in which temperature and @-entropy are dual coordinates. From
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the GPT for the scaled @-divergence, the maximum @-work is obtained.

From section 3 onwards, we discussed only adiabatic processes in thermally iso-

lated Hamiltonian systems in order to highlight the information-geometrical foun-

dation of thermodynamics. We excluded any phenomenological assumptions such

as the existence of a heat reservoir when considering its relation to information

geometry. However, we would still need high and low temperature heat reservoirs to

consider a heat engine [33]. Since the information geometry is flexibly applicable

for any parametrized probability distributions, the scaled KL divergence would play

an important role in the heat engine. One may consider scaling the KL divergence

by a quantity with power dimension, such as temperature divided by time. The GPT

based on this new scaled KL divergence would give us important knowledge for

optimizing the power. We will discuss this problem in the near future.
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A Extension to the q-geometry

A.1 Tsallis’s and Amari-Ohara’s @-divergence

In 1988, Tsallis introduced his @-entropy [38, 40],

(̃@ [d] ≡
1

1 − @ 〈d
@−1 − 1|d〉. (A.1)

The @-entropy satisfies axioms of Shannon–Khinchin of entropy except the additivity.

The @-entropy is rewritten as

(̃@ [d] = 〈log@

(
1
d

)
|d〉 (A.2)

where we used the @-logarithmic form of Tsallis’s functions for convenience. The

@-logarithmic function is defined as

log@ (G) ≡
G1−@ − 1

1 − @ , (A.3)

and its inverse function, the @-exponential function, is defined as

exp@ (G) ≡ {1 + (1 − @)G}
1

1−@ . (A.4)

In this Appendix, the subscript @ always means Tsallis’s functions [39, 41]. When

@ → 1, they become normal logarithmic and exponential functions.

Tsallis introduced his @-divergence as

�̃@ [d� | |d�] ≡ −〈log@

(
d�

d�

)
|d�〉, (A.5)

which is known to be the same as U-divergence up to a constant factor where
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U = 1 − 2@ [42, 43]. Amari and Ohara, However, introduced their normalized @-

divergence later by the conformal transformation of Tsallis’s one, which led to the

dual flat structure as a Bregman divergence. Amari-Ohara’s @-divergence is defined

as

�@ [d� ‖ d�] =
1

ℎ@ (d�)
�̃@ [d� ‖ d�]

=
1

(1 − @)ℎ@ (d�)

(
1 − 〈d@

�
d

1−@
�
〉
)

(A.6)

where ℎ@ (d) = 〈1|d@〉 is a conformal factor. This divergence (A.6) is derived

naturally by considering the @-exponential family which consists of @-exponential

distributions in the form of

d@ (G;θ) = exp@
{
θ · H (G) − k@ (θ)

}
. (A.7)

By taking θ as a coordinate and k@ (θ) as a convex function and calculating the

Bregman divergence

� [θ� ‖ θ�] = k@ (θ�) − k@ (θ�) − ∇k@ (θ�) · (θ� − θ�), (A.8)

we obtain Amari-Ohara’s @-divergence (A.6). Amari-Ohara’s @-entropy is also

adjusted by the conformal transformation as

(@ [d] ≡
1

ℎ@ (d)
(̃@ [d] . (A.9)
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A.2 maximum @-work formulation

Using the above framework, we will consider the maximum @-work formulation.

The @-work is the work with respect to the escort distribution, des, as

,@ ≡ 〈�) |des,) 〉 − 〈�0 |des,0〉. (A.10)

The escort density is a probability distribution. It is proportional to the density

raised to the power of @,

des(G) ≡
d@ (G)
ℎ@ (d)

(A.11)

where ℎ@ (d) serves as the normalization constant which does not depend on time

in Hamiltonian dynamics. By using the escort distribution, Amari-Ohara’s @-

divergence and @-entropy are rewritten respectively as

�@ [d� ‖ d�] = 〈log@ (d�) |des,�〉 − 〈log@ (d�) |des,�〉 (A.12)

and

(@ [d] = −〈log@ d |des〉. (A.13)

It should be noted that all expectation values change to those with the escort distri-

bution.

In order to calculate this @-work, we first check the correspondence between @-

canonical distribution and @-exponential distribution. The @-canonical distribution

is

d@−can(U) =
1

/@ (U)
exp@ (−U� (G)) , (A.14)
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which is calculated as follows:

d@−can(G;U) = 1
/@ (U)

{1 + (1 − @) (−U� (G))}
1

1−@

=

{
/
@−1
@ (U) + (1 − @)

(
−U/@−1

@ (U)� (G)
)} 1

1−@

=

{
1 + (1 − @)

(
−U/@−1

@ (U)� (G) +
/
@−1
@ (U) − 1

1 − @

)} 1
1−@

= exp@

(
−U/@−1

@ (U)� (G) +
/
@−1
@ (U) − 1

1 − @

)
= d@ (G;θcan(Û)) (A.15)

where in the last line we put following notations:

H (0) = −� (G) (A.16)

Û = U/
@−1
@ (U) (A.17)

θcan(Û) = (Û, 0, · · · , 0) (A.18)

k@ (θcan(Û)) =
1 − /@−1

@ (U)
1 − @ = − log@ (/−1

@ (U)). (A.19)

Another way of writing the @-canonical distribution,

d@−can(U) = exp@
(
Û(�@ (U) − � (G))

)
, (A.20)

gives the @-free energy as

�@ (U) = −
1
Û
k@ (θcan(Û)) =

1
Û

log@ (/−1
@ (U)) =

/
1−@
@ (U)
U

/
@−1
@ (U) − 1

1 − @

=
1
U

1 − /1−@
@ (U)

1 − @ = − 1
U

log@ (/@ (U)). (A.21)
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We then obtain a @-work identity similar to Eq. (2.31),

,@ = Δ�@ (U) +
1
Û
�@ [d) ‖ d@−can,) (U)] −

1
Û
�@ [d0 ‖ d@−can,0(U)] . (A.22)

The proof of Eq. (A.22) is given by a straightforward calculation:

,@ = 〈�) |des,) 〉 − 〈�0 |des,0〉

= Δ�@ (U) − Û−1 〈
Û

(
�@,) (U) − �)

)
|des,)

〉
+ Û−1 〈

Û
(
�@,0(U) − �0

)
|des,0

〉
− Û−1(@ [d) ] + Û−1(@ [d0]

= Δ�@ (U) − Û−1 〈
log@

(
d@−can,) (U)

)
|des,)

〉
+ Û−1〈log@ (d) ) |des,) 〉

+ Û−1 〈
log@

(
d@−can,0(U)

)
|des,0

〉
− Û−1〈log@ (d0) |des,0〉

= Δ�@ (U) + Û−1�@ [d) ‖ d@−can,) (U)] − Û−1�@ [d0 ‖ d@−can,0(U)] (A.23)

where we used the conservation of @-entropy in Hamiltonian system.

The non-negativity of Amari-Ohara’s @-divergence gives the inequality

,@ ≥ Δ�@ (U) −
1
Û
�@ [d0 ‖ d@−can,0(U)] (A.24)

which holds for any U. If it is a cyclic operation, Δ�@ = 0, the maximum work is

,@ ≥ −
1
Û
�@ [d0 ‖ d@−can,0(U)] ≡ W@,!� (U). (A.25)

A.3 The scaled @-divergence

Let us now consider cyclic operations for simplicity. Of course, the argument for

non-cyclic operation is essentially the same. We want to find the maximum value

of the right-hand side of Eq. (A.25) to get the maximum work that can be achieved,
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just as we did in Section 2 and 3. Condition for the derivative to be zero, i.e.,

m

mU
W@,!� (U) = 0, (A.26)

gives the iso-@-entropic condition

(@ [d@−can,0(Veff)] = (@ [d0] (A.27)

where Veff is the effective inverse temperature.

We, however, derive this iso-@-entropic condition by using the concept of scaled

@-divergence and its GPT. We introduce the scaled @-divergence between d and

d@−can(U) as Û−1�@ [d ‖ d@−can(U)]. Note that the scaling variable is Û, not U. The
minimization of this scaled @-divergence means the maximization of the @-work in

Eq. (A.25).

The GPT based on scaled @-divergences holds as the following theorem:

Theorem 3. If the iso-@-entropic condition is satisfied, i.e.,

(@ [d@−can,0(Veff)] = (@ [d0],

then the GPT holds,

Û−1�@ [d0 ‖ d@−can,0(U)]

= V̂−1
eff�@ [d0 ‖ d@−can,0(Veff)] + Û−1�@ [d@−can,0(Veff) ‖ d@−can,0(U)] .

(A.28)

68



A EXTENSION TO THE Q-GEOMETRY

Proof. The derivation is straightforward,

Û−1�@ [d0 ‖ d@−can,0(U)]

− V̂−1
eff�@ [d0 ‖ d@−can,0(Veff)] − Û−1�@ [d@−can,0(Veff) ‖ d@−can,0(U)]

= −Û−1(@ [d0] − �@,0(U) + 〈�0 |des,0〉 + V̂−1
eff(@ [d0] + �@,0(Veff) − 〈�0 |des,0〉

+ Û−1(@ [d@−can,0(Veff)] + �@,0(U) − 〈�0 |des,@−can,0(Veff)〉

= −Û−1(@ [d0] + V̂−1
eff(@ [d0] + �@,0(Veff) + Û−1(@ [d@−can,0(Veff)] − 〈�0 |des,@−can,0(Veff)〉.

(A.29)

Substituting the following relation into Eq. (A.29),

�@,0(Veff) − 〈�0 |des,@−can,0(Veff)〉 = −V̂−1
eff(@ [d@−can,0(Veff)], (A.30)

we obtain

Û−1�@ [d0 ‖ d@−can,0(U)]

− V̂−1
eff�@ [d0 ‖ d@−can,0(Veff)] − Û−1�@ [d@−can,0(Veff) ‖ d@−can,0(U)]

= −Û−1(@ [d0] + V̂−1
eff(@ [d0] + Û−1(@ [d@−can,0(Veff)] − V̂−1

eff(@ [d@−can,0(Veff)]

=

(
V̂−1

eff − Û
−1

) (
(@ [d0] − (@ [d@−can,0(Veff)]

)
= 0, (A.31)

where we used the isentropic condition (A.27) in the last line. �

From the non-negativity of @-divergence, Eq. (A.28) gives the following inequal-

ity

Û−1�@ [d0 ‖ d@−can,0(U)] ≥ V̂−1
eff�@ [d0 ‖ d@−can,0(Veff)] (A.32)

which is valid for any U. The right-hand-side of Eq. (A.32) provides the greatest

lower bound of,@ consistent with the iso-@-entropic condition (A.27).
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Theorem 3 shows that the theory in the case of @-divergence is completely

parallel to that of the KL divergence which is discussed in Section 3. This is because

the natural Bregman divergence based on the @-exponential distribution is Amari-

Ohara’s @-divergence. As for the geometric structure, we also find that the scaled

@-divergence leads to the different geometric structure from bare @-divergence.

While the bare @-divergence is a Bregman divergence with k@ = −Û�@ (U) as a

convex function, the scaled @-divergence is a Bregman divergence with −�@ (U) as a
convex function. Its coordinate system is Û−1 and its dual coordinate system is −(@.
This difference is shown in Figs.10 and 11. Figure 10 illustrates the GPT for bare

@-divergences

�@ [d ‖ d@−can(U)] = �@ [d ‖ d@−can(V)] + �@ [d@−can(V) ‖ d@−can(U)] (A.33)

which holds under the isoenergetic condition

〈� |des,@−can(V)〉 = 〈� |d〉 (A.34)

On the other hand, Figure 11 illustrates the GPT (A.28) for scaled @-divergence.

B Non-negativity of the KL divergence
We consider two probability distributions d(G) and f(G). The non-negativity of the
KL divergence � ! [d ‖ f] is easy to demonstrate using the elementary inequality

of log G ≤ G − 1 or − log G ≥ 1 − G. We have

� ! [d ‖ f] = −
〈
log

f

d
|d

〉
≥

〈(
1 − f

d

)
|d

〉
= 〈1|d〉 − 〈1|f〉 = 0 (B.1)
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𝜌

𝜌!"#$%(𝛼)
𝜌!"#$%(𝛽)

Iso-𝑞-energetic 
surface

Set of 𝑞-canonical 
distribution

𝐷![𝜌 ∥ 𝜌!"#$%(𝛽)]

𝐷![𝜌 ∥ 𝜌!"#$%(𝛼)]

𝐷![𝜌!"#$%(𝛽) ∥ 𝜌!"#$%(𝛼)]

Figure 10: The image of the GPT based on the @-divergences. Subscripts indicating
time are omitted.

𝜌!
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'𝛼#*𝐷"[𝜌"#$%&,! 𝛽()) ∥ 𝜌"#$%&,!(𝛼)]

,𝛽())
#*𝐷"[𝜌! ∥ 𝜌"#$%&,! 𝛽()) ] Set of 𝑞-canonical 

distribution

Figure 11: The image of the GPT based on the scaled @-divergences.

Note that equality occurs only when f(G)/d(G) = 1 for all G, i.e., when the two

distributions are identical.

For the quantum case involving density matrices d and f we consider their
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C CONCAVITY OFW!� WITH RESPECT TO THE TEMPERATURE

orthonormal decompositions: d =
∑
8 ?8 |q8〉〈q8 | and f =

∑
9 @ 9 |k 9 〉〈k 9 |. Then we

have

� ! [d ‖ f] = Tr [d log d] − Tr [d logf]

=
∑
8

?8 log ?8 −
∑
8

?8

∑
9

%8 9 log @ 9 , (A.4)

where %8 9 = 〈q8 |k 9 〉〈k 9 |q8〉 = |〈q8 |k 9 〉|2. It is clear that %8 9 ≥ 0,
∑
8 %8 9 = 1 and∑

9 %8 9 = 1. (As a matrix %8 9 is doubly stochastic.)

Now, we let A8 =
∑
9 %8 9@ 9 . (The A8 is regarded as a probability distribution.)

Since the logarithm is a concave function, the logarithm of @ 9 is less than or equal to

the tangential line at @ 9 = A8, log @ 9 ≤ log A8+ (@ 9 − A8)/A8. By taking the expectation
value with respect to %8 9 we obtain the Jensen-like inequality,

∑
9 %8 9 log @ 9 ≤ log A8.

This tells us that

� ! [d ‖ f] ≥
∑
8

?8 log
?8

A8
. (A.5)

The right-hand-side here is proved to be greater than or equal to zero by the same

argument we used for the classical probability distribution above. Thus, � ! [d ‖
f] ≥ 0.

Our discussion here largely follows that in Chapter 11 of Nielsen and Chuang

[53]. For alternative proofs, one can consult Cover and Thomas [54].

C Concavity ofW!�with respect to the tem-
perature

To determine the effective inverse temperature we use the fact thatW!� (U) has one
global maximum as a function of U. This is most easily seen from the concavity

of W!� as a function of the temperature, U−1. To show this we use the facts
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(known from thermodynamics and also holding for a canonical distribution) that the

derivative of the Helmholtz free energy with respect to temperature is minus the

entropy and the derivative of the entropy with respect to temperature is positive.

We have,

m

mU−1W!� (U) =
m

mU−1�) (U) + ([d0]

= −([dcan,) (U)] + ([d0] . (C.1)

Then,
m2

(mU−1)2
W!� (U) = −

m

mU−1 ([dcan,) (U)] . (C.2)

The derivative of the entropy with respect to temperature is proportional to the heat

capacity or equivalently to the variance of the energy, which is positive. Thus we

have
m2

(mU−1)2
W!� (U) < 0, (C.3)

which means thatW!� (U) is a concave function of U−1.

Suppose mU−1W!� (U) = 0 at U−1 = Ṽ−1. The concavity ofW!� (U) tells us that
mU−1W!� (U) is a strictly monotonic function (of U−1) so that mU−1W!� (U) cannot
be zero for any other value of U−1 than Ṽ−1. Since U−1 and U are in one-to-one

correspondence,W!� (U) has then only one global maximum as a function of U;

the one at U = Ṽ.
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D ThegeneralizedPythagorean theorembased
on the KL divergence

The importance of the GPT based on the scaledKL divergence is shown in Sections 3

and 4. Here, we will describe the GPT based on the bare (non-scaled) KL divergence

for comparison. The geometric structure based on the bareKL divergence is different

from the geometric structure based on the scaled KL divergence. We also derive

the well-known principle of maximum entropy. While its proof usually just uses the

non-negativity of the KL divergence [54,55], it is also be derived from the GPT [17].

In this Appendix, for brevity, we suppress the subscripts representing time.

Using bare KL divergences gives us the following theorem;

Theorem 4. Under the isoenergetic condition, i.e.,

〈� |d〉 = 〈� |dcan(V)〉, (D.1)

the GPT based on the KL divergence holds,

� ! [d ‖ dcan(U)] = � ! [d ‖ dcan(V)] + � ! [dcan(V) ‖ dcan(U)] . (D.2)

Proof. This theorem is easy to confirm as,

� ! [d ‖ dcan(U)] − � ! [d ‖ dcan(V)] − � ! [dcan(V) ‖ dcan(U)]

= −([d] − U(� (U) − 〈� |d〉) − {−([d] − V(� (V) − 〈� |d〉)}

− {V(� (V) − 〈� |dcan(V)〉) − U(� (U) − 〈� |dcan(V)〉)}

= U〈� |d〉 − V〈� |d〉 − U〈� |dcan(V)〉 + V〈� |dcan(V)〉

= (V − U) (〈� |dcan(V)〉 − 〈� |d〉) = 0 (D.3)
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where we used the isoenergetic condition of (D.1) in the last line. �

The geometric image of the GPT based on KL divergences is illustrated in

Figure 12. The (geodesic) line connecting d and dcan(V) on the isoenergetic surface
is orthogonal to the parametric line of canonical distributions in terms of the KL

divergence.

𝜌

𝜌!"#(𝛼)

𝜌!"#(𝛽)

Isoenergetic 
surface

Set of canonical 
distribution

𝐷$%[𝜌 ∥ 𝜌!"#(𝛽)]

𝐷$%[𝜌 ∥ 𝜌!"#(𝛼)]

𝐷$%[𝜌!"#(𝛽) ∥ 𝜌!"#(𝛼)]

Figure 12: The image of the GPT based on the KL divergences.

By substituting the following expressions of the KL divergences into the GPT,

Eq. (D.2),

� ! [d ‖ dcan(U)] = −([d] − U(� (U) − 〈� |d〉) (D.4)

� ! [dcan(V) ‖ dcan(U)] = −([dcan(V)] − U(� (U) − 〈� |dcan(V)〉), (D.5)

Eq. (D.2) is rewritten as

−([d] − U(� (U) − 〈� |d〉)

= � ! [d ‖ dcan(V)] − ([dcan(V)] − U(� (U) − 〈� |dcan(V)〉). (D.6)
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From the isoenergetic condition Eq. (D.1),

−([d] = � ! [d ‖ dcan(V)] − ([dcan(V)] . (D.7)

Using the non-negativity of the KL divergence in the right-hand-side, we obtain

([d] ≤ ([dcan(V)] . (D.8)

This inequality holds for any probability distribution d satisfying the isoenergetic

condition (D.1). The canonical distribution has the maximum entropy among isoen-

ergetic distributions. This property is thewell-known principle ofmaximumentropy.
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